نتایج جستجو برای: گروه فازی پوچ توان
تعداد نتایج: 210095 فیلتر نتایج به سال:
در این پایان نامه با مطالعه حلقه های آرمنداریز به بررسی ویژگی آرمنداریز در حلقه هم حاصل ضرب از k-جبرها می پردازیم. سپس حلقه های پوچ آرمنداریز را که تعمیمی از حلقه های آرمنداریز می باشند مورد مطالعه قرار می دهیم و ساختار مجموعه ای از عناصر پوچ توان در حلقه های آرمنداریز و پوچ آرمنداریز را بررسی می نماییم. هم چنین به بررسی توسیع چند جمله ای حلقه های پوچ آرمنداریز می پردازیم. در پایان با مطالعه حل...
فرض کنیم x یک سرشت تحویل ناپذیر از یک گروه متناهی ناآبلی g باشد. برای اعداد صحیح نا منفی n و m با شرط m + n > 0، در این مقاله حالتی که تمام موسس های تحویل ناپذیر سرشت xn xm سرشت های خطی g هستند مورد بحث قرار می گیرد. در مقاله ای ریاضی دان معروف به نام مان ثابت کرد که اگر g یک گروه متناهی و x یک سرشت تحویل ناپذیر g باشد و تمام موسس های تحویل ناپزیر x2 خطی باشند، آن گاه (ǵ≤z(g و لذا g گروهی پوچ ت...
فرض کنیم g یک گروه باشد و paut(g) مجموعه ی متشکل از خودریختی های چندجمله ای g باشد. در این صورت زیرگروهی aut(g) را که توسط paut(g) تولید شود، با نماد (paut) ?(g)نمایش می دهیم. در این پایان نامه مطالب ذیل مورد بررسی قرار می گیرد. اگر g گروهی پوچ توان از رده ی c در آبلی باشد که در آن c یک عدد صحیح و مثبت است، آنگاه (paut) ?(g) پوچ توان از رده ی حداکثر c-1 در فراآبلی می باشد. اگر g حل پذیر از...
قضیه کلاینیکه شیروکف و تعمیمهای آن خاصیتی از برد نگاشت هایی موسوم به اشتقاق را بیان می کنند که با پیوستگی این نگاشت ها درارتباط است. دراین رساله نشان می دهیم که برای اشتقاق دلخواه dاگر داشته باشیم d^2a=0 آنگاه daشبه پوچ توان است. همچنین برای اشتقاق پیوسته dاگر داشته باشیم ada=da.aآنگاه daشبه پوچ توان است. و در پایان یک حالت موضعی از این قضیه اثبات می شود.
چکیده: ماتریس? را پوچ توان می نامیم هرگاه به ازای عددطبیعی مانند n داشته باشیم . به ازای هر ماتریس ? روی فضای هیلبرت ، شعاع عددی و برد عددی را به ترتیب صورت a^n=0 w(a)= max{ |?|:??w(a)} و w(a)={:x?h ,|(|x|)|=1} تعریف می کنیم. یک ماتریس پوچ توان3×3 دارای بردعددی دایره ای است اگرو فقط اگر محاسبه می شود.w(a)=?(tr(a^* a))/2 شعاع عددی آن با فرمول و ?tr(a^* a)?^2=0 یک ماتریس پوچ توان...
می دانیم که همه زیرگروه های پوچ توان حل پذیر هستند. فرض کنید تعداد زیرگروه های ماکسیمال غیر نرمال گروه متناهی g پوچ توان باشند, نشان می دهیم که g حل پذیر است و به ازای برخی عدد اولp, p-پوچ توان است. و اگر g ناپوچ توان باشد تعداد مقسوم علیه های اول مرتبه g بین 2وk+2 خواهد بود. که k تعداد زیرگروه های ماکسیمال نرمال هستند که پوچ توان نمی باشند.
در این پایان نامه نمایش یک گروه را معرفی و سپس برخی از خواص آن را مطالعه می کنیم.
در این پایان نامه ساختار گروه های متناهی که دارای 3 اندازه رده مزدوجی هستند را بررسی می کنیم. به ویزه ملاحظه می کنیم که این گروه ها حل پذیر با طول مشتق حداکثر 3 هستند، یا گروه های پوج توان اند. رتبه مزدوجی یک گروه تعداد اندازه های متمایز رده های مزدوجی غیر مرکزی آن گروه است. وجود یک عامل آبلی در حاصل ضرب مستقیم، تاثیری در رتبه مزدوجی ندارد. رده f-گروه ها شامل گروه هایی است که مرکز سازهای عناصر ...
گروه g دقیقا غیر x نامیده می شود اگر g در کلاس x نباشد اما همه خارج قسمت های محض آن x-گروه باشند. توصیفی از گروههای دقیقا غیر پوچ توان بوسیله متناهی و گروههای دقیقا غیر ابرحلپذیر بوسیله متناهی در این پایان نامه داده شده است.در این پایان نامه ثابت می شود، زیرگروه فیتینگ یک گروه دقیقا غیر پوچ توان بوسیله متناهی یا آبلی غیر تابدار یا آبلی از نمای p می باشد. بدیهی است هر گروه ساده نامتناهی یک گروه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید