نتایج جستجو برای: نگاشت قویا انقباضی
تعداد نتایج: 3562 فیلتر نتایج به سال:
در این پایان نامه ابتدا مفهوم نگاشت های انقباض میر-کیلر(meir-keeler) را معرفی نموده و قضیه وجود و یکتایی نقطه ی بهترین تقریب را برای چنین نگاشت هایی اثبات می کنیم. سپس گسترشی از رده ی نگاشت های انقباض دوری را معرفی نموده و قضیه ی وجود و یکتایی نقاط بهترین تقریب برای چنین نگاشت هایی را اثبات می کنیم. سپس، نگاشت های انقباضی پروکسیمال از نوع اول و دوم را تعریف کرده و به بررسی وجود نقاط بهترین تق...
نتایج بدست آمده در این پایان نامه به سه بخش تقسیم می شوند: در بخش اول، با توجه به مفهوم انقباضی ضعیف که در واقع یکی از تعمیم های اصل انقباض باناخ میباشد و در نظر گرفتن این شرایط بروی یک نگاشت دلخواه تعریف شده برروی یک فضای متریک مرتب،وجود نقطه ثابت را برای آن نگاشت در دو حالت اینکه نگاشت صعودی باشد یا نزولی بدست آوردیم. در بخش دوم با توجه به مفهوم متر جزئی و شرایط آن به بررسی وجود نقطه ثابت ب...
فرض کنیدaوb دو زیر مجموعه ناتهی فضای متریک (x,d) باشند. می دانیم که معادله تابعی tx=x که در آن t یک ناخود نگاشت داده شده است، لزوماً جواب ندارد. پس در این حالت سعی می کنیم که یک جواب تقریبی x را بیابیم به طوری که(d(x,tx مینیمم باشد. قضایای بهترین نقطه ی نزدینی شرایط کافی را برای وجود یک جواب تقریبی فراهم می نمایند که آن را بهترین نقطه ی نزدینی ناخود نگاشت t می نامند؛ این جواب در شرط dist(a,b)=...
در این پایان نامه دو قضیه نقطه ثابت را روی نگاشت های تعریف شده در فضاهای gpـ متریک gpـکامل اراپه می دهیم که در خاصیت انقباضی تعمیم یافته توسط توابع نیم پیوسته بالایی معین صدق می کنند.بعلاوه برخی از کاربردهای قضایا را با مثال نشان می دهیم.
در این پایان نامه در صدد معرفی مفاهیمی مثل نقاط ثابت زوج، نقاط انطباقی، تعویض پذیری توابع، یکنوایی مرکب و قضایای وجود و یکتایی نقاط ثابت نگاشت های انقباضی در فضاهای متریک کامل مرتب جزئی هستیم که تعمیم قضایای بهاسکار و لاکاشمیکاندام می باشد.
در این پایان نامه، نتایجی از نظریه ی نقطه ی ثابت به کمک نظریه ی گراف را بررسی می کنیم. یعنی، ابتدا فضاهای متریک مجهز به یک گراف را چنان در نظر می گیریم که نگاشت های تعریف شده بر آنها با خاصیت های متفاوت دارای نقطه ی ثابت باشند. با الهام از انقباض های متریک، انقباض های گراف-متریک مورد مطالعه قرار خواهند گرفت. همچنین نشان می دهیم که بسیاری از نتایج نقطه ی ثابت در فضاهای متریک با ترتیب جزیی را م...
در این پایان نامه نوع خاصی از انقباض ها موسوم به نوع انتگرالی را مورد مطالعه قرار داده ایم . در واقع اینگونه انقباض تعمیمی از انقباض اصلی باناخ می باشد. پس از ارائه انقباض انتگرالی، نگاشت هایی با فاصله های متغیر را معرفی می کنیم و به بیان رابطه بین نقطه ثابت مشترک این نگاشت ها در شرایط انقباضی انتگرالی می پردازیم. همچنین این انقباض را در فضاهای g- متریک و شبه متریک مورد بررسی قرار می-دهیم و در ...
در این پایان نامه فرض می کنیم x یک مجموعه ناتهی و e یک فضای باناخ حقیقی مرتب و p یک زیر مجموعه بسته و ناتهی از e در اینجا با جایگزین کردن فضای باناخ حقیقی مرتب با اعداد حقیقی متریک مخروطی را معرفی می کنیم. در این پایان نامه نشان می دهیم که هر فضای متریک مخروطی یک فضای توپولوژیک شمارای اول است. در اینجا خلاصه ای از نگاشت های یکنوای آممیخته را مطرح میکنیم و انطباق زوج ها و قضیه های نقطه ثابت مشتر...
این پایان نامه نظریه ی نگاشت های ((?;?-انقباضی تقریبا تعمیم یافته را در فضای متریک مرتب معرفی و نتایجی از نقطه ثابت و نقطه ثابت مشترک را ثابت می کند. این نتایج ، چندین نظریه ی شناخته شده را عمومیت می دهد. و در آخر مثال و کابردی آورده شده تا نتایج را تایید کند.
در این پایان نامه به معرفی عملگرهای ترکیبی وزن دار می پردازیم و همچنین فضاهای توابع لیپ شیتسی برداری مقدار را بیان می کنیم با استفاده از تعریف نگاشت ابر انقباضی ویژگی های دیگر عملگر های ترکیبی وزن دار را بررسی می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید