نتایج جستجو برای: مدلهای پیش آموزش دیده شبکه عصبی کانولوشن
تعداد نتایج: 194794 فیلتر نتایج به سال:
امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیقتر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...
در این پروژه در گام اول با استفاده از داده های واقعی کوره دوار سیمان، سعی شده است مدل پیش بین و همچنین مدلی شبیه ساز برای فرایند کوره دوار سیمان به دست آید. به منظور طراحی مدل پیش بین کوره دوار سیمان از مدل فازی ممدانی، مدل فازی تاکاگی-سوگنو و شبکه عصبی استفاده شده است. سپس با مقایسه مدلهای پیش بین به دست آمده، از مدل شبکه عصبی پرسپترون به منظور طراحی مدل شبیه ساز سیستم بهره گرفته شده است. برای...
آزمایش پرسیومتری، یکی از مهم ترین آزمایشهای برجای مهندسی ژئوتکنیک است. این آزمایش قادر به تخمین بسیار مناسبی از پارامترهای تغییرشکلی خاک است. در این تحقیق از سه نوع شبکه عصبی مصنوعی (ann) به منظور پیش بینی و تفسیر آزمایش پرسیومتری استفاده شده است. در ابتدا از شبکه عصبی چند لایه پرسپترون ، یکی از پرکاربردترین شبکه های عصبی، استفاده شده است. در ادامه از شبکه نروفازی، ترکیبی از شبکه های عصبی- فازی...
در دهه های اخیر شبکه های عصبی مصنوعی به عنوان ابزاری موفق در تخمین و پیش بینی پدیده های هیدرولوژیکی به کار گرفته شده اند. اگرچه استفاده از شبکه های عصبی مصنوعی امکان برآورد بار معلق رسوب رودخانه ها را با دقت و سرعت مناسب فراهم کرده است، اما دقت پیش بینی این مدل ها، به میزان زیادی تحت تاثیر دانش و درک کاربر از شبکه عصبی مصنوعی قرار دارد. در مطالعات منابع طبیعی و به ویژه مطالعات هیدرولو...
در این پژوهش، توانایی شبکه های عصبی مصنوعی(ANN) ، به عنوان روشی نوین در خصوص پیش بینی احتمال گزارشگری مالی متقلبانه ،در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران در یک دوره زمانی 9 ساله بین سال های 1385 تا 1393مورد بررسی قرار گرفت. بدین منظور از طریق اطلاعات مندرج درصورتهای مالی ، نسبتهای مالی و مدل پرسپترون های چند لایه که شامل یک لایه ورودی ،لایه پنهان از دید نرم افزار MATLAB، و یک لایه ...
ماهیت روابط تشریح کننده بسیاری از فرایندهای واقعی زندگی به ویژه در حوزه های تجاری و مدیریتی اغلب غیر خطی هستند. لذا پیش بینی رفتار چنین فرایندهایی نیازمند ابزارهای دقیق و اثر بخش است. شبکه های عصبی مصنوعی قادرند به عنوان یک ابزار مهم مدل سازی در پیش بینی مسائل کسب و کار، نقایص مدل های معمول را جبران نمایند. هدف مقاله حاضر نشان دادن برتری شبکه های عصبی در پیش بینی فرایند های غیر خطی در مقایسه با...
در این مقاله، یک سیستم CAD بر اساس شبکه های عصبی کانولوشن سلسلهمراتبی با ساختاری جدید، جهت ایجاد تمایز بین تومورهای خوشخیم و بدخیم در تصاویر MR سینه پیشنهاد شده است. شبکهی عصبی کانولوشن، یک شبکهی سلسله مراتبی عصبی است که بر روی تصاویر دو بعدی اعمال میشود و فرآیندهای استخراج ویژگی و طبقهبندی را در یک ساختار واحد و کاملاً تطبیقی، ادغام میکند. این ساختار می تواند ویژگی های دو بعدی کلیدی را ب...
در این پژوهش با استفاده از شبکه عصبی و عصبی-فازی ضریب انتقال حرارت در نانوسیالات جاری در یک لوله مدور در رژیم جریان آشفته مدلسازی و پیشبینی شده است. دادههای ورودی به مدل، عدد رینولدز و کسر حجمی نرمال شده نانوذرات و خروجی آن ضریب انتقال حرارت نرمال شده است. در شبکه عصبی استفاده شده مقادیر متوسط خطای نسبی و متوسط مربع خطا نسبت به نتایج آزمایشگاهی بهترتیب برابر 002/0 و 0005/0 میباشد، در شبکه ...
یکی از روشهایی که در زمینه های مختلف علمی استفاده شده و می تواند فرایند پیچیده بارش – رواناب را شبیه سازی کند، استفاده از مدلهای شبکه عصبی مصنوعی است. هدف این تحقیق بررسی کارآمدی شبکه های عصبی مصنوعی در شبیه سازی فرایند بارش- رواناب و مقایسه نتایج آنها با مدل HEC – HMS در حوضه آبریز رودخانه اعظم هرات در استان یزد است. داده های مورد استفاده در این تحقیق شامل بارندگی روزانه به همراه دبی روزانه و ...
مدل سازی فضایی تخلخل و تراوایی با استفاده از داده های متعدد چاه دارای اهمیت بسیار مهمی در مطالعات اکتشاف و تولید نفت و گاز است. اهمیت هر مدل سازی اصولاً به روش/روش های استفاده شده برای مدل سازی بستگی دارد. در مطالعه حاضر از روش شبکه های عصبی مصنوعیِ پس انتشار خطا برای تخمین مقادیر تخلخل و تراوایی بخش های مختلف سازند ایلام در یکی از میادین نفتی حوضه زاگرس استفاده شده است. نمودارهای چاه نگاری تخلخل...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید