نتایج جستجو برای: فضای خطی مخروطی
تعداد نتایج: 56621 فیلتر نتایج به سال:
یک فضای خطی متناهی بر v نقطه با b خط یک فضا است که در آن از هر دو نقطه درست یک خط عبور می کند. در این پایان نامه ما مقالات زیر را که مربوط به فضاهای خطی ایت را بررسی می کنیم. melone, n. (1991). a structure theorem for finite linear spaces. lecture notes math, 2, 231-241. bridges, w.g. (1972). near 1-designs. j. combinatorial theory (a), 13, 116-126. varga, l.e. (1985). a note on the structu...
با توجه به اینکه خواص پایه ای فضاهای متریک از اعمال جبری اعداد حقیقی به دست آمده، ای ایده کاملا طبیعی است که در فضاهای متریک به جای اینکه برد تابع متریک در r قرار گیرد در یک فضای برداری (و یا باناخ) قرار گیرد. این ایده اولین بار توسط هانگ و زانگ تحت عنوان فضاهای متریک مخروطی به طور رسمی مطرح گردید و پس از آن ریاضیدانان زیادی به آن علاقه نشان داده و مباحث مختلف مطرح شده در فضاهای متریک را در فضا...
پی شرایطی روی فضاهای مرتب خطی توپولوژیک هستیم که تحت آن زنجیر ماکسیمال l دارای عضو ماکسیمال(ماکسیمم) باشدو همچنین شرایط کافی روی فضای مرتب خطی توپولوژیک ارایه می دهیم که آن h- بسته شود. به طور مثال اگر فضای مرتب خطی توپولوژیک بطور منظم خطی باشد شرایط کافی به وجود می آید.
روش های ناحیه اعتماد یکی از روش های حل مسایل بهینه سازی نامقید است که به صورت گسترده ای در ادبیات موضوع مورد بررسی قرار گرفته است. روش های ناحیه اعتماد و مدل مخروطی روش هایی هستند که در آن ها زیر مساله ناحیه اعتماد، مدل مخروطی تابع هدف در نقطه فعلی را روی قید ناحیه اعتماد بهینه می کند. در این پایان نامه، الگوریتم های ناحیه اعتماد و مدل درجه دوم و مدل مخروطی مورد بررسی قرار گرفته و رهیافتی جدید ...
فرض کنیم که a یک جبر باناخ و e یک a- مدول باناخ باشد نگاشت خطی s از a به e را پیچان نامیم هر گاه نگاشت دو خطی a*a در نتیجه e، (a,b) درنتیجه a.sb-s(ab)+s(a).b پیوسته باشد. بعنوان مثال اگر جبر باناخ a متناهی مولد باشد آنگاه هر نگاشت خطی از a به e پیچان خواهد شد. در قسمت اول این پایان نامه پیوسته بودن نگاشتهای پیچان را در مورد مطالعه قرار خواهیم داد و نشان داده خواهد شد که اگر هر مشتق از جبرباناخ ...
در این پایان نامه، ابتدا به بیان و بررسی نتایج نقطه ثابت مشترک برای نگاشت های انقباضی ضعیف ( به طور ضعیف انقباضی ) می پردازیم. سپس، نتایج تعمیمی را که اخیرا توسط چودهاری و متیا به دست آمده است بررسی می کنیم. در ادامه، نقاط برخورد و ثابت مشترک را برای یک جفت از نگاشت ها در فضاهای متریک مخروطی مشخص می کنیم. در انتها، فضای متریک مخروطی را تعریف کرده و به بیان و اثبات قضایای مربوط برای نگاشت های ان...
در این پایان نامه، دوگانگی مزدوج توابع محدب مجموعه مقدار مورد مطالعه قرار می گیرد. این پایان نامه به صورت زیر تنظیم شده است: فصل اول، به مرور برخی تعاریف و نتایج پایه ای توپولوژی، آنالیز تابعی و آنالیز محدب اختصاص یافت که در فصل های بعدی مورد استفاده می باشند. هدف اصلی فصل دوم، معرفی فضاهای برداری توپولوژیک محدب و فضاهای خطی مخروطی و خواص مهم آن ها می باشد. در فصل سوم، برخی از نتایج...
علاقمندی به مطالعه فضاهای تانسوری متقارن شده، به ساختارهای فضاهای گراسمان برمی گردد. توسیع نظریه گراسمان به فرمهای دیفرانسیل خارجی که توسط کاردان انجام شد و کاربردهای وسیع این فرمها در همه جای هندسه دیفرانسیل، مظریه های فیزیکی و معادلات دیفرانسیل تصادفی، انگیزه بیشتری برای مطالعه آنها برانگیخت . کارهای کلاسیک دیگر کلاس تقارن تانسورها در زیرفضاهای همگن حلقه های چند جمله ای ظاهر شده است . در واقع...
در این پایان نامه، دو نوع توپولوژی فازی تعریف شده روی فضاهای خطی نرم دار فازی ارائه شده است. در ادامه نشان داده شده است که فضاهای خطی نرم دار فازی با توپولوژی نوع اول یک فضای برداری توپولوژیک فازی نیستند اما با توپولوژی نوع دوم هستند، یعنی توابع جمع برداری و ضرب اسکالر نسبت به توپولوژی نوع دوم پیوسته فازی هستند.
هدف ما در این پایان نامه این است که نشان دهیم اگر vt یک چندگونای سگره از p1 ×· · ·×p1 به توی pn باشد در این صورت s-امین چندگونای متقاطع از چندگونای سگره دارای بعد امید می باشد. سپس نشان می دهیم که برای t=4 و s=3, سومین چندگونای متقاطع بعد امید مورد نظر را ندارد و ثابت می کنیم که این تنها مثال نقض در این خانواده نامتناهی می باشد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید