نتایج جستجو برای: فضاهای موضعا فشرده هاسدورف
تعداد نتایج: 12516 فیلتر نتایج به سال:
فرض کنیم x و y فضاهای فشرده هاسدورف بوده و a و b به ترتیب جبرهای یکنواخت بر x و y باشند.هم چنین فرض کنیم از a به b یک عملگر پوشا باشد نشان می دهیم اگر در شرط ضربی-محیطی ;b((f)(g)) = ;a(fg); صدق کند که در آن؛ ;a(f) = f 2 a(f) : jj = maxfjwj : w 2 a(f)gg; آن گاه یک یکریختی جبری طولپای از a بروی b است. یکی از نتایج این حکم این است که هر یک یکریختی جبری ?? عملگر یکانی، پوشا و ضربی که بردهای م...
ابتدا هنگ (modulus) حاصلضرب عناصر جبرهای باناخی که دارای ساختار مشبکه ای و به گروه های موضعا فشرده مربوط می شوند مورد بررسی قرار می گیرند و سپس برای گروه موضعا فشرده g، هنگ مضروب های (multiplier)، l (g), l1 (g) و l1 (g)** مورد مطالعه قرار می دهیم در حقیقت نشان داده می شود که اگر t:l1 (g)-->l1 (g) یک مضروب باشد هنگ t که به [t] نمایش می دهیم نیز یک مضروب است و به طور مشابه برای l (g) نشان می دهیم...
فرض کنیم g یک گروه موضعا فشرده باشد هدف از این پایان نامه بررسی شرایطی است که ? l?^p (g) به عنوان یک باناخ l^1 (g)- مدول تزریقی و میانگین پذیر باشد. در واقع با تعریف مفهوم چند نرمیها بر روی فضاهای باناخ به هدف خود میرسیم. ابتدا در یک حالت خاص که s یک نیمگروه باشد در مورد تزریقی بودن فضای l^1 (s) مطالعه می کنیم سپس با ارایه مثال هایی از نیمگروه های مختلف مشاهده می کنیم اگرs نیمگروهی باشد که میان...
هر گروه توپولوژیک موضعا فشرده یک اندازه پایای چپ دارد که آن را اندازه هار می نامیم. فضای lp متناظر با این اندازه را در نظر می گیریم. روی این فضا عملی به نام پیچش تعریف می کنیم. حدس lp بیان می کند که فضای lp تحت عمل ئیچش بسته است اگر و تنها اگر گروه توپولوژیک مورد نظر فشرده باشد.
در این پایان نامه سیرکلی فضاهای محدب یکنواخت و فضاهای موضعا محدب یکنواخت مورد بررسی قرار گرفته شده است . شرطهای معادلی برای این فضاها نیز آورده شده است و در نهایت کاربرد این فضاها در نظریه تقریب بررسی شده است .
فرض کنیم g یک گروه توپولوژیک راست هاسدورف فشرده پذیرفتنی باشد. در واقع g یک گروه با توپولوژی هاسدورف است به طوری که برای هر a?g نگاشت g?ga پیوسته و مجموعه نقاط a?g که نگاشت g?ag پیوسته است درg چگال می باشند. در این پایان نامه به مطالعه ی جبر فوریه-استیلتیس( b(g یعنی فضای تولید شده توسط تابع های معین مثبت پیوسته روی g می پردازیم. نشان می دهیم( b(g با جبر فوریه-استیلتیس یک گروه توپولوژیک فشرده ی...
در مقدمه شرح مختصری از تعریف آنتروپی برای گروه های آبلی موضعا فشرده توسط پیترز را بیان می کنیم. این نگرش اجازه کار با درونریختی ها را به جای کار با خودریختی ها می دهد.
دیدونه در سال 1944 میلادی برای اولین بار فضاهای هاسدورفی، که هر پوشش بازشان دارای یک تظریف باز موضعاً متناهی بود را فضاهای پیرافشرده نامید. ما در این رساله ضمن تعریف مفهوم پیرافشردگی، به بررسی برخی از معادل ها، میزان ارثی بودن، حاصل جمع، حاصل ضرب دکارتی، جایگاه و توابعی که این خاصیت را حفظ می کنند می پردازیم. گردایه وار نرمال و گردایه وار هاسدورف به ترتیب دومین و سومین خواصی هستند که به معرفی...
در این پایان نامه نشان داده شده که (b(g همان دوگان (c*(g است. در فصل 2 به ویژگی ها و اثبات های پایه ای از (b(g اشاره شده است. پس از آوردن تعریفی از جبرهای فوریه در شروع فصل 3، ملاحضه می شود (a(g زیر جبری از (b(g تولید شده از توابع مثبت معین با محمل فشرده است.در ادامه در قالب قضیه ای اثبات می گردد دوگان (a(g دقیقا (vn(g است. همچنین در این فصل مشاهده می گردد که (a(g یک (vn(g- مدول چپ و (vn(g یک (...
این پایان نامه در سه فصل نوشته شده است، در فصل اول تعاریف و قضایای لازم برای فصل های دوم و سوم بیان شده است. فصل دوم به بررسی عملگرهای ترکیبی وزن دار روی فضاهای توابع اندازه پذیر اختصاصداده شده است. فصل سوم که در واقع اصلی ترین فصل پایان نامه است به بیان نرم اساسی عملگر ترکیبی روی فضاهای ارلیز می پردازد. این پایان نامه بر اساس مقالات زیر تدوین گردیده است: • m. r. jabarzadeh the essential...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید