نتایج جستجو برای: زیرحلقه آرتینی
تعداد نتایج: 202 فیلتر نتایج به سال:
در این مقاله اثبات شده که مدول m در شرط زنجیر صعودی (به ترتیب. شرط زنجیر نزولی) روی غیر جمعوندها صدق می کند اگر وفقط اگر m نیم ساده یا نوتری(به ترتیب. آرتینی) باشد . روی یک حلقه نوتری راست،- r مدول راست m در شرط زنجیر صعودی روی غیر جعموندهای متناهی تولید شده صدق می کند اگر و فقط اگر m در شرط زنجیر صعودی روی غیر جمعوند ها صدق کند . هم چنین یک r – مدول راست m درشر ط زنجیر نزولی روی غیر جمعوندها...
ترتیب r در حلقه آرتینی ساده q، یک حلقه ارزیابی دوبرووین نامیده می شود، اگر r بیزوت r/j(r) آرتینی ساده باشد که j(r) رادیکال ژاکوبسون حلقه rاست. دراین پایان نامه، r - ایده ال هایی چون i که به عنوان r- ایده ال های راست متناهیاَ تولید شده نیستند و or(i) = s = ol(i را توصیف نموده و ثابت خواهیم کرد که عناصر پایدار کننده ای مثل c و ایده ال های j(s) - اولیه ای چون a وجود دارد که ca=i. به عنوان کا...
این پایان نامه که به تبیین و تشریح تعمیمی از مدول های کوهمولوژی موضعی نسبت به ایده آل های (i,j)می پردازد. فرض کنیمr یک حلقه جابجایی و نوتری، iوjدو ایده آل از rباشند. فرض کنیمr موضعی با ایده آل ماکسیمالm باشد. نشان می دهیم : (i) برای هر r-مدول متناهی مولد m تساوی زیر برقرار است، inf lbrace i vert h^{i} _{i,j} (m) mbox{نیست آرتینی} brace =inf lbrace depth m_{p} ver...
چکیده ندارد.
در سراسر ایران رساله a بعنوان حلقه ای در جابجایی و یکدار (oala) می باشد و ایده آلهای a را با حروف کوچک لاتین و خط زیرشان و نیز عناصر حلقه را با حروف کوچک نمایش می دهیم و m بعنوان یک -a مدول می باشد. در این بحث ابتدا به مقدمات و پیشتازیها اشاره مختصری شده و سپس نمایش ثانویه مدولها روی یک حلقه جابجایی مطرح گشته و بعد مدولها و حلقه های مدرج و همگن عنوان گردیده و در پایان مدولهای آرتینی و رفتار جان...
فرض کنیدrیک حلقه جابجایی و یکدار باشد.-rمدول یکانی m هم ضربی است، هرگاه برای هر زیرمدول n از m، ایده ال a از r موجود باشد به طوری که n مجموعه عناصر m از m باشد کهam=0 در این پایان نامه اثبات می شود که اگرm یک -rمدول با تولید متناهی باشد و b پوچساز m در r باشد، آنگاه حلقه r/bنیم موضعی است و در حالاتی خاصm خارج قسمت با بعد متناهی است. علاوه بر ...
در جبر خطی فضاهای برداری با بعد متناهی دارای خواص جالبی می باشند. همانطور که می دانیم در یک فضای برداری با بعد متناهی تعداد متناهی عنصر موجود است بطوریکه فضا را تولید کرده و مستقل خطی می باشند. این عناصر را پایه آن فضا می نامند. در مطالعه مدولها (تعمیمی از فضاهای برداری) ممکن است همواره عناصری به خوبی پایه موجود نباشد. بدین ترتیب بحث در مورد سیستم خاصی از مدولها که آنها را مدولهای متناهی - مولد...
فرض کنیم k یک حلقه جابه جایی و آرتینی و ? یک k-جبر با تولید متناهی باشد. در این صورت ? را یک جبر آرتینی گوییم. رسته همه ?–مدول ها را با mod? ورسته همه ?-مدول های با تولید متناهی را با mod? نشان می دهیم. ?-مدول m را یک مولد برای mod? می نامیم اگر برای هر مدول ناصفر x، همریختی ناصفر از m به x موجود باشد. ?-مدول m را یک هم مولد گوییم هرگاه برای هر مدول ناصفر x،همریختی ناصفر از x بهm موجود باشد. ...
فرض کنید (r, ??) یک حلقه موضعی منظم باشد، و یک حلقه موضعی آرتینی باشد. در این تحقیق به محاسبه کران های بالا و پایین برای تعداد (i)?? ( اعضای مجموعه مولد مینیمالi ) می پردازیم و در حالتی که به کمک حلقه مدرج وابسته به a و تابع هیلبرت آن، قضیه ساختاری برای این حلقه ارائه می دهیم. ایده اصلی این پایان نامه از مقاله j. elias, g. valla, structure theorems for certain gorenstein ideals, michigan math...
در این رساله، با نظیر کردن دو گراف به حلقه های جابه جایی، به مطالعه ساختار جبری آن ها می پردازیم. فرض کنید $r$ حلقه ای جابه جایی و یکدار بوده و $mathbb{a}(r)$، $max (r)$ و $min (r)$ به ترتیب، مجموعه ایده آل های $r$ با پوچساز ناصفر، مجموعه ایده آل های ماکزیمال $r$ و مجموعه ایده آل های اول مینیمال $r$ باشند. گراف جهت دار م...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید