نتایج جستجو برای: روش نقاط متناهی

تعداد نتایج: 381314  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی 1393

بسیاری از مدل¬های شناخته شده در علوم طبیعی و مهندسی و امروزه در اقتصاد به معادلات دیفرانسیل جزئی وابسته هستند. بنابراین، تأثیرجواب¬های تحلیلی یا عددی این نوع از معادلات نقش روزافزونی در حیطه تکنولوژی ایفا می¬کند.روش¬های مختلفی برای حل معادلات دیفرانسیل جزئی خطی و غیرخطی وجود دارند. در این پایان نامه، روش خطوط، تفاضلات متناهی و آشفتگی هوموتوپی مورد مطالعه قرار گرفته و نتایج به دست آمده از روش خط...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1393

در این پایان نامه به حل معادلات پخش دو بعدی با شرط انتگرالی با استفاده از روش آنالیز هموتوپی پرداخته شده است و نتایج حاصل از این روش با روش های تکرار دگرگونی و روش عددی تفاضلات متناهی مقایسه و به تحلیل همگرایی روش های مذکور و بیان ساده برای کنترل ناحیه ی همگرایی در مسائل خطی و غیر خطی پرداخته شده است. نتایج حاصله از روش آنالیز هموتوپی بیان گر کارایی و اعتماد پذیری این روش برای یافتن جواب های تق...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1390

در این رساله یک مسأله سهموی معکوس به منظور تعیین هم زمان توابع مجهول p(t)، q(t) و u(x,t) را در نظر می گیریم به طوری که در معادله ی: u_t=u_xx+q(t) u_x+p(t)u+f(x,t); x?(0,1), t?(0,t], (1) با شرایط اولیه-کرانه ای u(x,t)=?(x); x?[0,1], (2) u(0,t)=g_1 (t); t?(0,t] (3) u(1,t)=g_2 (t); t?(0,t] (4) و همراه با شرایط فوق اضافی: u(x^*,t)=e_1 (t), u(x^(**),t)=e_2 (t); x^*,? x?^(**)?(0,1), t?(0,t]...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1391

معادلات دیفرانسیل کسری،بخصوص معادلات دیفرانسیل جزئی کسری کاربردهای زیادی در پردازش انتشار،الکترومغناطیس و علم مواد دارند.دراین پایان نامه روش عناصر متناهی را برای حل معادلات دیفرانسیل جزئی کسری زمان در نظر می گیریم.وجود و یکتایی جواب با استفاده از لم لکس-میلگرام اثبات می شود.یک روش گام زمانی مبنی بر یک قاعده انتگرال گیری معرفی می شود.روش تمام گسسته با استفاده از روش عناصر متناهی مطرح می شود و ت...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده فیزیک 1392

در این پایان نامه ابتدا، به معرفی حلقه های کوانتومی می پردازیم و سپس روش اجزاء متناهی را برای حل معادله ی شرودینگر الکترونی که در این حلقه حرکت می کند تعمیم می دهیم. به عنوان یک دستگاه خاص حلقه ی کوانتومی دو بعدی با شکل بیضی را انتخاب می کنیم. تغییرات طیف انرژی و نوسانات آهارونف- بوهم در حلقه های کوانتومی دو بعدیبیضوی برحسب پهنای حلقه و میزان کشیدگی آن بررسی می شود نتایج حاصل از روش اجزاءمتن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه 1393

در این پایان نامه، یک معادله ی انتگرو-دیفرانسیل هذلولوی مرتبه ی کسری با یک هسته ی پیچش به طور ضعیف منفرد، با شرایط اولیه و شرایط مرزی در نظر گرفته شده است. ابتدا معادله با شرایط مرزی دیریکله و نویمن همگن، به فرم یک مسأله کوشی انتزاعی تبدیل می شود و خوش وضعی مسأله در قالب نظریه ی نیم گروه های خطی اثبات می شود. سپس، از یک روش گالرکین پیوسته (cg(1)/ cg(1))، که عملگرهای کلی بر روی دامنه محاسباتی م...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1391

این پایان نامه به بررسی مسئله ی کنترل بهینه ی مقید به معادله ی دیفرانسیل با مشتقات جزئی هذلولوی پایستار می پردازد. یک نمونه از این مسائل، مسأله ی کنترل مرزی و توزیعی معادله ی موج شبه خطی است. در این جا با استفاده از تقریب تفاضلات متناهی و روش پرتابی این مسأله را حل می کنیم. ‎‎ نمونه ای دیگر از مسائل کنترل بهینه ی مقید به معادلات پایستاری‏، مسئله ی کنترل شار ورودی در سیستم های تولیدی است که ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1389

چون از یک طرف بسیاری از پدیده های فیزیکی به صورت معادلات تحولی غیرخطی مدل می شوند و از طرف دیگر روش تفاضل متناهی فشرده دارای ویژگیهای شاخص پایداری، کارایی و همگرایی مرتبه بالا است، در این پایان نامه قصد داریم به بررسی حل عددی برخی معادلات تحولی غیرخطی به کمک روش تفاضل متناهی فشرده بپردازیم. این پایان نامه را میتوان به دو بخش تقسیم کرد: 1) در بخش اول معادله تحولی را تعریف کرده و مقدمه ای بر پید...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1392

فرض کنیم g یک گروه باشد. گروه خودریختی های گروه g و زیرگروه متشکل از نقاط ثابت خودریختی ? از گروه g را به ترتیب با (aut(g و (c_g (? نشان می دهیم. خودریختی ? منظم یا بدون نقطه ثابت (تقریباً منظم) نامیده می شود اگر c_g (?)=1 ((c_g (? متناهی باشد). در این پایان نامه نتایج زیر مورد بررسی قرار می گیرد: 1. ساختار گروههای متناهی که خودریختی منظم از مرتبه عدد اول p دارند، به خصوص زمانی که p برابر 2 یا...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید