نتایج جستجو برای: روشهای شبکه عصبی مصنوعی

تعداد نتایج: 68257  

بهزاد قنبریان علویجه سمانه سهرابی عبدالمجید لیاقت,

ویژگی­های هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا می­نمایند.  از آنجائی­که اندازه­گیری مستقیم این قبیل ویژگی­های هیدرولیکی خاک امری وقت­گیر و هزینه­بر است روش­های غیرمستقیمی چون توابع انتقالی و شبکه­های عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافته­اند.  در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به­ منظور تخمین هدایت هیدرولیک...

ژورنال: :مجله اپیدمیولوژی ایران 0
آذر اسد آبادی a asadabadi msc, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranکارشناس ارشد آمار زیستی، گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران عباس بهرامپور a bahrampour professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران علی اکبر حقدوست aa haghdoost associate professor, phd, modeling of health research center, department of biostatistics & epidemiology, school of health, kerman university of medical sciences, iranاستاد گروه آمار زیستی و اپیدمیولوژی دانشکده بهداشت و مرکز تحقیقات مدل سازی در سلامت دانشگاه علوم پزشکی کرمان، کرمان، ایران

مقدمه و اهداف: در سال‎های اخیر، توجه قابل ملاحظه‎ای به مدل‎های آماری برای طبقه‎بندی داده‎های پزشکی با توجه به بیماری‎های مختلف و پیامدهای آن‎ها شده است. شبکه‎های عصبی مصنوعی به دلیل عدم نیاز به پیش فرض با موفقیت برای تشخیص الگو و پیش‎بینی در برخی از مطالعه های بالینی استفاده شده‎اند. هدف از این مطالعه، مقایسه دو مدل آماری شبکه عصبی مصنوعی و رگرسیون لجستیک برای پیش بینی بقای بیماران مبتلا به سرط...

مدل‌سازی و پیش‌بینی سطح ایستابی چاه‌ها یکی از کار‌های اساسی برایرسیدن به مدیریت بهینه منابع آب می‌باشد. یکی از راه‌های پیش‌بینی سطح آب زیرزمینی استفاده از تکنیک‌های هوش مصنوعی نظیر شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن می‌باشد. هدف از این پژوهش بررسی کارایی روش شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن در پیش‌بینی سطح ایستابی آب زیرزمینی آبخوان دشت جیرفت می‌باشد. به این منظور از داده‌های سطح ایست...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده عمران 1392

با توجه به اهمیت بسزای آب زیرزمینی در توسعه پایدار فعالیت های اقتصادی به ویژه در مناطق خشک و نیمه خشک، مطالعه دقیق و برآورد صحیح تراز آب زیرزمینی همواره مورد توجه محققین بوده است. به دلیل پیچیدگیهای موجود در طبیعت سیستمهای آب زیرزمینی و همچنین محدودیتهای موجود در حفر گمانه ها، مدلسازی زمانی و مکانی تراز آب زیرزمینی به آسانی میسر نمی باشد. اما شبکه های عصبی مصنوعی دارای توانایی بالایی در مدلسازی...

ژورنال: :دانش آب و خاک 0
تورج هنر سوده پورحمزه

در این تحقیق، از یک شبکه عصبی مصنوعی در برآورد پروفیل پرش هیدرولیکی در حوضچه آرامش همراه با دیواره همگرا  که از حالت­های خاص و پیچیده پرش هیدرولیکی می­باشد، استفاده شده است. تعداد 1500 داده آزمایشگاهی اعماق پرش هیدرولیکی مربوط به مقاطع مستطیلی، برای همگرایی  %7/2،  %4 و %3/5 مورد استفاده قرار گرفته است. در توسعه مدل شبکه عصبی مصنوعی، 10 ساختار پرسپترون، با تعداد لایه­های پنهان و نرون­های مختلف،...

یکی از جنبه‌های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه‌ای می‏باشد. هدف این مطالعه ارزیابی عملکرد مقایسه‌ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود می‏باشد. مدل‏ها براساس آمار 104 حادثه وقوع همزمان ثب...

رضا تهرانی سعید مرادپور

تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیش‌بینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شده‌اند. نوع آزمون عملکر...

ژورنال: :اکوسیستم های طبیعی ایران 0
بهنام بهرامی دانشجوی دکتری اردوان قربانی استادیار مرتعداری

اندازه گیری مستقیم تنوع گونه­ای امری وقت­گیر و ­هزینه­بر بوده و تا حدی به دلیل خطاهای حاصل از نمونه­گیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتور­های کم­هزینه در پیش­بینی تنوع گونه­ای بوسیله شبکه مدل­های عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونه­برداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتی­متری خاک صورت گر...

ژورنال: :مهندسی و مدیریت آبخیز 2010
محمد شعبانی

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

ژورنال: :روش های تحلیلی و عددی در مهندسی معدن 2014
محمد مختاریان مصلح افتخاری علیرضا باغبانان

از فاکتورهای مهم در پیش بینی عملکرد tbm، تعیین نرخ نفوذ حفاری و نرخ پیشروی است. هدف اصلی از این مطالعه، بررسی استفاده از آنالیز مؤلفه های اصلی در پیش بینی نرخ نفوذ tbmبا استفاده از روش شبکه های عصبی مصنوعی است. یکی از بخش های مهم در استفاده از روش شبکه های عصبی به منظور پیش بینی، انتخاب پارامترهای ورودی است. آنالیز مؤلفه های اصلی یکی از روش هایی است که با استفاده از آن می توان پارامترهای مؤثر ب...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید