نتایج جستجو برای: روشهای شبکه عصبی مصنوعی
تعداد نتایج: 68257 فیلتر نتایج به سال:
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
مقدمه و اهداف: در سالهای اخیر، توجه قابل ملاحظهای به مدلهای آماری برای طبقهبندی دادههای پزشکی با توجه به بیماریهای مختلف و پیامدهای آنها شده است. شبکههای عصبی مصنوعی به دلیل عدم نیاز به پیش فرض با موفقیت برای تشخیص الگو و پیشبینی در برخی از مطالعه های بالینی استفاده شدهاند. هدف از این مطالعه، مقایسه دو مدل آماری شبکه عصبی مصنوعی و رگرسیون لجستیک برای پیش بینی بقای بیماران مبتلا به سرط...
مدلسازی و پیشبینی سطح ایستابی چاهها یکی از کارهای اساسی برایرسیدن به مدیریت بهینه منابع آب میباشد. یکی از راههای پیشبینی سطح آب زیرزمینی استفاده از تکنیکهای هوش مصنوعی نظیر شبکه عصبی مصنوعی و برنامهریزی بیان ژن میباشد. هدف از این پژوهش بررسی کارایی روش شبکه عصبی مصنوعی و برنامهریزی بیان ژن در پیشبینی سطح ایستابی آب زیرزمینی آبخوان دشت جیرفت میباشد. به این منظور از دادههای سطح ایست...
با توجه به اهمیت بسزای آب زیرزمینی در توسعه پایدار فعالیت های اقتصادی به ویژه در مناطق خشک و نیمه خشک، مطالعه دقیق و برآورد صحیح تراز آب زیرزمینی همواره مورد توجه محققین بوده است. به دلیل پیچیدگیهای موجود در طبیعت سیستمهای آب زیرزمینی و همچنین محدودیتهای موجود در حفر گمانه ها، مدلسازی زمانی و مکانی تراز آب زیرزمینی به آسانی میسر نمی باشد. اما شبکه های عصبی مصنوعی دارای توانایی بالایی در مدلسازی...
در این تحقیق، از یک شبکه عصبی مصنوعی در برآورد پروفیل پرش هیدرولیکی در حوضچه آرامش همراه با دیواره همگرا که از حالتهای خاص و پیچیده پرش هیدرولیکی میباشد، استفاده شده است. تعداد 1500 داده آزمایشگاهی اعماق پرش هیدرولیکی مربوط به مقاطع مستطیلی، برای همگرایی %7/2، %4 و %3/5 مورد استفاده قرار گرفته است. در توسعه مدل شبکه عصبی مصنوعی، 10 ساختار پرسپترون، با تعداد لایههای پنهان و نرونهای مختلف،...
یکی از جنبههای حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانهای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسهای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدلها براساس آمار 104 حادثه وقوع همزمان ثب...
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیشبینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شدهاند. نوع آزمون عملکر...
اندازه گیری مستقیم تنوع گونهای امری وقتگیر و هزینهبر بوده و تا حدی به دلیل خطاهای حاصل از نمونهگیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتورهای کمهزینه در پیشبینی تنوع گونهای بوسیله شبکه مدلهای عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونهبرداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتیمتری خاک صورت گر...
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
از فاکتورهای مهم در پیش بینی عملکرد tbm، تعیین نرخ نفوذ حفاری و نرخ پیشروی است. هدف اصلی از این مطالعه، بررسی استفاده از آنالیز مؤلفه های اصلی در پیش بینی نرخ نفوذ tbmبا استفاده از روش شبکه های عصبی مصنوعی است. یکی از بخش های مهم در استفاده از روش شبکه های عصبی به منظور پیش بینی، انتخاب پارامترهای ورودی است. آنالیز مؤلفه های اصلی یکی از روش هایی است که با استفاده از آن می توان پارامترهای مؤثر ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید