نتایج جستجو برای: خوشهبندی k means
تعداد نتایج: 702412 فیلتر نتایج به سال:
K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though –such as w...
چکیده: راه اندازی موفق سیستم های یکپارچه منابع سازمانی منوط به اتخاذ سیاستهای پیاده سازی درست و استفاده از ابزار مناسب میباشد. استفاده از ابزارهای مناسب داده کاوی در این امر بسیار موثر است. با مطالعه 10 الگوریتم برتر داده کاوی و همینطور الگوریتم erpasd ، بهینه سازی الگوریتم k-means به عنوان موضوع این پایان نامه انتخاب گردید. در این پایان نامه استفاده از پایگاه دانش برای جریان های کاری سیستم ...
The K-means algorithm is one of the most often used clustering techniques. However, when it comes to discovering clusters in informetric data sets that consist of non-increasingly ordered vectors of not necessarily conforming lengths, such a method cannot be applied directly. Hence, in this paper, we propose a K-means-like algorithm to determine groups of producers that are similar not only wit...
Social networks are generators of large amount of data produced by users, who are not limited with respect to the content of the information they exchange. The data generated can be a good indicator of trends and topic preferences among users. In our paper we focus on analyzing and representing hashtags by the corpus in which they appear. We cluster a large set of hashtags using K-means on map ...
In this paper, we propose a new clustering algorithm to cluster data. The proposed algorithm adopts a new non-metric measure based on the idea of “symmetry”. The detected clusters may be a set of clusters of different geometrical structures. Three data sets are tested to illustrate the effectiveness of our proposed algorithm.
Uniform deviation bounds limit the difference between a model’s expected loss and its loss on a random sample uniformly for all models in a learning problem. In this paper, we provide a novel framework to obtain uniform deviation bounds for unbounded loss functions. As a result, we obtain competitive uniform deviation bounds for k-Means clustering under weak assumptions on the underlying distri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید