let $g=(v,e)$ be a simple graph. a set $ssubseteq v$ isindependent set of $g$, if no two vertices of $s$ are adjacent.the independence number $alpha(g)$ is the size of a maximumindependent set in the graph. in this paper we study and characterize the independent sets ofthe zero-divisor graph $gamma(r)$ and ideal-based zero-divisor graph $gamma_i(r)$of a commutative ring $r$.