نتایج جستجو برای: weighted slant hankel operators
تعداد نتایج: 200210 فیلتر نتایج به سال:
For α, β > 0 and for a locally integrable function (or, more generally , a distribution) ϕ on (0, ∞), we study integral ooperators G α,β ϕ on L 2 (R +) defined by G α,β ϕ f (x) = R+ ϕ x α + y β f (y)dy. We describe the bounded and compact operators G α,β ϕ and operators G α,β ϕ of Schatten–von Neumann class S p. We also study continuity properties of the averaging projection Q α,β onto the oper...
In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subs...
Wiener-Hopf plus Hankel operators acting between Lebesgue spaces on the real line are studied in view of their invertibility, one sided-invertibility, Fredholm property, and the so-called n and d–normal properties. This is done in two different cases: (i) when the Fourier symbols of the operators are unitary functions, and (ii) when the Fourier symbols are related with sectorial elements appear...
Abstract. We give a full extension of (one version of) the celebrated "AAK-theorem" on Hankel operators, to the case of weighted l-spaces with increasing weights. This theorem was conjectured in [3], and it improves earlier work by S. Treil and A. Volberg, [8]. We also show that the corresponding extension of the classical formulation of the "AAK-theorem" fails, and show that this is a conseque...
This paper gives embedding theorems for a very general class of weighted Bergman spaces: the results include a number of classical Carleson embedding theorems as special cases. The little Hankel operators on these Bergman spaces are also considered. Next, a study is made of Carleson embeddings in the right half-plane induced by taking the Laplace transform of functions defined on the positive h...
This paper investigates the eigenstructure of Hankel operators for nonlinear systems. It is proved that the variational system and Hamiltonian extension can be interpreted as the Gâteaux differentiation of dynamical input-output systems and their adjoints respectively. We utilize this differentiation in order to clarify the eigenstructure of the Hankel operator, which is closely related to the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید