نتایج جستجو برای: vacuum bagging

تعداد نتایج: 49193  

Journal: :Neurocomputing 2010
André L. V. Coelho Diego Silveira Costa Nascimento

Bagging is a popular ensemble algorithm based on the idea of data resampling. In this paper, aiming at increasing the incurred levels of ensemble diversity, we present an evolutionary approach for optimally designing Bagging models composed of heterogeneous components. To assess its potentials, experiments with well-known learning algorithms and classification datasets are discussed whereby the...

Journal: :International Journal of Forecasting 2021

Often, relations between economic variables cannot be exploited for forecasting, suggesting that predictors are weak in the sense estimation uncertainty is larger than bias from ignoring relation. In this paper, we propose a novel bagging estimator designed such predictors. Based on test finite-sample predictive ability, our shrinks ordinary least squares estimate—not to zero, but towards null ...

2017
Cristiano Fragassa

The rising concern about environmental issues and the need to find a realistic alternative to glass or carbon-reinforced composites have led to an increased interest in polymer composites filled with natural-organic fibers, derived from renewable and biodegradable sources. The scope of this article is to raise awareness regarding the current scientific and technological knowledge on these so-ca...

1997
J. Sunil Rao William J. E. Potts

We present a visual tablet for exploring the nature of a bagged decision tree (Breiman [1996]). Aggregating classifiers over bootstrap datasets (bagging) can result in greatly improved prediction accuracy. Bagging is motivated as a variance reduction technique, but it is considered a black box with respect to interpretation. Current research seekine: to explain why bagging works has focused ond...

Journal: :Molecules 2014
Ji-Yuan Shen Lei Wu Hong-Ru Liu Bo Zhang Xue-Ren Yin Yi-Qiang Ge Kun-Song Chen

Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsc...

1997
IAN H. WITTEN

Ensembles of decision trees often exhibit greater predictive accuracy than single trees alone. Bagging and boosting are two standard ways of generating and combining multiple trees. Boosting has been empirically determined to be the more eeective of the two, and it has recently been proposed that this may be because it produces more diverse trees than bagging. This paper reports empirical nding...

2013
Guohua Liang Anthony G. Cohn

Learning from imbalanced data is an important problem in data mining research. Much research has addressed the problem of imbalanced data by using sampling methods to generate an equally balanced training set to improve the performance of the prediction models, but it is unclear what ratio of class distribution is best for training a prediction model. Bagging is one of the most popular and effe...

2004
S. B. Kotsiantis P. E. Pintelas

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...

1997
Pedro M. Domingos

The error rate of decision-tree and other classi-cation learners can often be much reduced by bagging: learning multiple models from bootstrap samples of the database, and combining them by uniform voting. In this paper we empirically test two alternative explanations for this, both based on Bayesian learning theory: (1) bagging works because it is an approximation to the optimal procedure of B...

Journal: :Journal of the Korean Data and Information Science Society 2014

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید