نتایج جستجو برای: tuple total restrained domatic number
تعداد نتایج: 1838024 فیلتر نتایج به سال:
Let G = (V, E) be a graph. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V −D has a neighbor in V −D. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for...
The domatic number d(G) of a graph G = (V,E) is the maximum order of a partition of V into dominating sets. Such a partition Π = {D1, D2, . . . , Dd} is called a minimal dominating d-partition if Π contains the maximum number of minimal dominating sets, where the maximum is taken over all d-partitions of G. The minimal dominating d-partition number Λ(G) is the number of minimal dominating sets ...
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) → {−1, 1} is said to be a signed star k-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that ∑d i=1 fi(e) ...
Domination is a well-known graph theoretic concept due to its significant real-world applications in several domains, such as design and communication network analysis, coding theory, optimization. For connected ? = V , E ...
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...
A graph with no isolated vertices is edge critical with respect to total restrained domination if for any non-edge e of G, the total restrained domination number of G+ e is less than the total restrained domination number of G. We call these graphs γtr-edge critical. In this paper, we characterize all γtr-edge critical unicyclic graphs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید