نتایج جستجو برای: trivariate garch model
تعداد نتایج: 2106669 فیلتر نتایج به سال:
We address the IGARCH puzzle, by which we understand the fact that a GARCH(1,1) model fitted to virtually any financial dataset exhibit the property thatˆα + ˆ β is close to one. We do this by proving that if data is generated by a stochastic volatility model but fitted to a GARCH(1,1) model one would get thatˆα + ˆ β tends to one in probability as the sampling frequency is increased. We also d...
We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. 2012 The rapid advances in 3D scanning and acquisition techniques have given rise to the explosive increase of volumetric digital models in recent years. This dissertation systematically trailblazes a novel volu-metric modeling framework to represent 3D s...
This paper introduces a unified model, which can accommodate both a continuoustime Itô process used to model high-frequency stock prices and a GARCH process employed to model low-frequency stock prices, by embedding a discrete-time GARCH volatility in its continuous-time instantaneous volatility. This model is called a unified GARCH-Itô model. We adopt realized volatility estimators based on hi...
We introduce a modeling constructor for micro-structures and porous geometry via curve-trivariate, surface-trivariate and trivariate-trivariate function (symbolic) compositions. By using 1-, 2and 3-manifold based tiles and paving them multiple times inside the domain of a 3-manifold deforming trivariate function, smooth, precise and watertight, yet general, porous/micro-structure geometry might...
Since ARCH and GARCH models are presented, more and more authors are interested in the study of volatilities in financial markets with GARCH models. Method for estimating the coefficients of GARCH models is mainly the maximum likelihood estimation. Now we consider another method—MCMC method to substitute for maximum likelihood estimation method. Then we compare three GARCH models based on it. M...
This paper is mainly talking about several volatility models and its ability to predict and capture the distinctive characteristics of conditional variance about the empirical financial data. In my paper, I choose basic GARCH model and two important models of the GARCH family which are E-GARCH model and GJR-GARCH model to estimate. At the same time, in order to acquire the forecasting performan...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework we allow for different distributions of the historical and the pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing...
One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and mode...
We introduce a new semiparametric model, GARCH with Functional EX ogeneous Liquidity (GARCH-FunXL), to capture the impact of liquidity, as implied by a stock exchange’s complete electronic limit order book (LOB), on asset price volatility. LOB-implied liquidity can be viewed as a functional rather than scalar or vectorial stochastic process. We adopt recent ideas from the functional data analys...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework, we allow for different distributions of historical and pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing GARCH ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید