نتایج جستجو برای: strong paired domination
تعداد نتایج: 426130 فیلتر نتایج به سال:
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The minimum cardinality of a paired-dominating set of G is the paireddomination number of G, denoted by γpr (G). In this work, we present several upper bounds on the paired-domination number in terms of the maximum degre...
The dual notions of domination and packing in finite simple graphs were first extensively explored by Meir and Moon in [15]. Most of the lower bounds for the domination number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood packing, number of the factors. In addition, the domination number of any graph is at least as large as its 2-packing number, and the invaria...
In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998) 199–206). A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardinality of a p...
a 2-emph{rainbow dominating function} (2rdf) on a graph $g=(v, e)$ is afunction $f$ from the vertex set $v$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin v$ with $f(v)=emptyset$ thecondition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled. a 2rdf $f$ isindependent (i2rdf) if no two vertices assigned nonempty sets are adjacent.the emph{weight} of a 2rdf $f$ is the value $o...
A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating set S of G such that the subgraph induced by S contains a perfect matching; motivation for this problem comes from the interest in finding a small number of locations to place pairs of mutually visibl...
Abstra t A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adja ent to a vertex in D. The paired domination problem on G asks for a minimumardinality dominating set S of G su h that the subgraph indu ed by S ontains a perfe t mat hing; motivation for this problem omes from the interest in nding a small number of lo ations to pla e pairs of mutually vis...
A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69– 75] established the followin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید