Let f(x) = a0x r0 + a1x r1 + · · · + akx rk , where each ai ∈ R, each rk ∈ N := {0, 1, . . . }, and r0 < r1 · · · < rk. Suppose u < v. Let z(f, u, v) = the number of roots of f in (u, v], counted with multiplicity. For any w ∈ R and n ∈ N, let s(f, w, n) = the number of sign-changes in the sequence f(w), f ′(w), f ′′(w), . . . , f (w) (skipping over zeros). Then the Fourier-Budan Theorem says t...