نتایج جستجو برای: sign changing weight functions
تعداد نتایج: 1014244 فیلتر نتایج به سال:
Let Ω 0 be an-open bounded domain in R N ≥ 3 and p∗ pN/ N − p . We consider the following quasilinear elliptic system of two equations inW 0 Ω ×W 1,p 0 Ω : −Δpu λf x |u|q−2u α/ α β h x |u|α−2u|v|β,−Δpv μg x |v|q−2v β/ α β h x |u|α|v|β−2v, where λ, μ > 0, Δp denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α β ≤ p∗, and f, g, h are continuous functions on Ω which are somewher...
In this article, we study the existence of infinitely many nontrivial solutions for a class of superlinear p-Laplacian equations −∆pu+ V (x)|u| p−2 u = f(x, u), where the primitive of the nonlinearity f is of subcritical growth near ∞ in u and the weight function V is allowed to be sign-changing. Our results extend the recent results of Zhang and Xu [Q. Y. Zhang, B. Xu, Multiplicity of solution...
and Applied Analysis 3 Theorem 1.3 see 5 . There exists λ0 > 0 such that 1.4 admits exactly two solutions for λ ∈ 0, λ0 , exactly one solution for λ λ0, and no solution for λ > λ0. To proceed, wemake somemotivations of the present paper. Recently, in 6 the author has considered 1.2 with subcritical nonlinearity of concave-convex type, g ≡ 1, and f is a continuous function which changes sign in ...
In this paper,~we are concerned with the following discrete problem first $$\left\{ \begin{array}{ll} -\Delta^{2}u(t-1)=\lambda p(t)f(u(t)), &t\in[1,N-1]_{\mathbb{Z}},\\ \Delta u(0)=u(N)=0,\\ \end{array} \right. $$ where $N>2$~is an integer,~$\lambda>0$~is a parameter,~$p:[1,N-1]_{\mathbb{Z}}\rightarrow\mathbb{R}$~is sign-changing function,~$f:[0,+\infty)\rightarrow[0,+\infty)$~is continuous an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید