نتایج جستجو برای: shallow water equations

تعداد نتایج: 803964  

1995
T Basaruddin

Shallow water equations arise in many scientiic applications, for example climate modeling. The numerical solution of such equations requires a very large amount of computation which is suitable for parallelization. The odd-even Hopscotch method is parallelizable and is applied to solve this problem. Our aim is to investigate the performance of the method implemented on the virtual shared memor...

Journal: :Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 2016

2010
Jana Orszaghova Alistair G. L. Borthwick Paul H. Taylor

A one-dimensional hybrid numerical model is presented of a shallow-water flume with an incorporated piston paddle. The hybrid model is based on the improved Boussinesq equations by Madsen and Sørensen (1992) and the nonlinear shallow water equations. It is suitable for breaking and non-breaking waves and requires only two adjustable parameters: a friction coefficient and a wave breaking paramet...

Journal: :J. Sci. Comput. 2006
Alina Chertock Alexander Kurganov Guergana Petrova

We present a new hybrid numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. The idea behind the new finite-volume-particle (FVP) method is to use different schemes for the flow and the pollution computations: the shallow water e...

2004
Huazhong Tang Tao Tang Kun Xu

In this paper, the Kinetic Flux Vector Splitting (KFVS) scheme is extended to solving the shallow water equations with source terms. To develop a well-balanced scheme between the source term and the flow convection, the source term effect is accounted in the flux evaluation across cell interfaces. This leads to a modified gas–kinetic scheme with particular application to the shallow water equat...

2013
Mathieu Cathala MATHIEU CATHALA

We present new models to describe shallow water flows over non smooth topographies. The water waves problem is formulated as a system of two equations on surface quantities in which the topography is involved in a Dirichlet-Neumann operator. Starting from this formulation and using the joint analyticity of this operator with respect to the surface and the bottom parametrizations, we derive a no...

2017
Bernard Di Martino Catherine Giacomoni Jean-Martin Paoli Pierre Simonnet Jean Martin Paoli

In this paper we propose a numerical method to solve the Cauchy problem based on the viscous shallow water equations in an horizontally moving domain. More precisely, we are interested in a flooding and drying model, used to modelize the overflow of a river or the intrusion of a tsunami on ground. We use a non conservative form of the two-dimensional shallow water equations, in eight velocity f...

In this research, the element free Galerkin is implemented to simulate the bed-load sediment transport equations in two dimensions. In this method, which is a meshless method, the computational domain is discretized by a set of arbitrarily scattered nodes and there is no need to use meshes, elements or any other connectivity information in nodes. The hydrodynamical part of sediment transport eq...

2008
I.Yu. Gejadze John Anderson

In the context of river hydraulics we elaborate the idea of a ’zoom’ model locally superposed on an open-channel network global model. The zoom model (2D shallow water equations) describes additional physical phenomena, which are not represented by the global model (1D shallow water equations with storage areas). Both models are coupled using the optimal control approach when the zoom model is ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید