نتایج جستجو برای: schur index

تعداد نتایج: 400323  

Journal: :Advances in Mathematics 2011

2008
Sho Matsumoto

To each partition λ, we introduce a measure Sλ(x; t)sλ(y)/Zt where sλ is the Schur function and Sλ(x; t) is a generalization of the Schur function defined in [M] and Zt is a normalization constant. This measure, which we call the t-Schur measure, is a generalization of the Schur measure [O] and the shifted Schur measure studied by Tracy and Widom [TW3]. We prove that by a certain specialization...

2006
Yasuhide Numata

Young’s lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young...

Journal: :J. Comb. Theory, Ser. A 1996
Angèle M. Hamel

Schur Q-functions were originally introduced by Schur in relation to projective representations of the symmetric group and they can be defined combinatorially in terms of shifted tableaux. In this paper we describe planar decompositions of shifted tableaux into strips and use the shapes of these strips to generate pfaffi.ans and determinants that are equal to Schur Q-functions. As special cases...

Journal: :J. Comb. Theory, Ser. A 2011
James Haglund Kurt W. Luoto Sarah Mason Stephanie van Willigenburg

We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur fun...

2007
I. P. GOULDEN

We give a new explicit solution to the KP hierarchy. This is written in terms of Schur symmetric functions, and uses the known characterization of solutions to the KP hierarchy in terms of solutions to the Plücker relations. Our solution to the Pluc̈ker relations involves a countable set of variables for content, a combinatorial parameter for partitions (which themselves arise because they index...

2007
JIE DU QIANG FU

We present a survey of recent developments of the Beilinson–Lusztig–MacPherson approach in the study of quantum gl n , infinitesimal quantum gl n , quantum gl ∞ and their associated q-Schur algebras, little q-Schur algebras and infinite q-Schur algebras. We also use the relationship between quantum gl ∞ and infinite q-Schur algebras to discuss their representations.

2016
V. TEWARI

Using operators on compositions we develop further both the theory of quasisymmetric Schur functions and of noncommutative Schur functions. By establishing relations between these operators, we show that the posets of compositions arising from the right and left Pieri rules for noncommutative Schur functions can each be endowed with both the structure of dual graded graphs and dual filtered gra...

Journal: :J. Comb. Theory, Ser. A 2015
Susanna Fishel Matjaz Konvalinka

Many results involving Schur functions have analogues involving k-Schur functions. Standard strong marked tableaux play a role for k-Schur functions similar to the role standard Young tableaux play for Schur functions. We discuss results and conjectures toward an analogue of the hook-length formula.

Journal: :Discrete Mathematics 1998
Sergey Fomin Curtis Greene

We develop a theory of Schur functions in noncommuting variables, assuming commutation relations that are satissed in many well-known associative algebras. As an application of our theory, we prove Schur-positivity and obtain generalized Littlewood-Richardson and Murnaghan-Nakayama rules for a large class of symmetric functions, including stable Schubert and Grothendieck polynomials.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید