نتایج جستجو برای: roman 2 domination

تعداد نتایج: 2543014  

Journal: :Australasian J. Combinatorics 2013
Ahmed Bouchou Mostafa Blidia

For a graph G = (V,E), a Roman dominating function on G is a function f : V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR (G). T...

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

2011
S. M. Sheikholeslami L. Volkmann

LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...

Journal: :Discrete Mathematics 2004

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

Journal: :Discussiones Mathematicae Graph Theory 2011
T. N. M. Malini Mai P. Roushini Leely Pushpam

Let G = (V,E) be a graph and f be a function f : V → {0, 1, 2}. A vertex u with f(u) = 0 is said to be undefended with respect to f , if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f ′ : V → {0, 1, 2} defined by f ′ (u) = 1, f ′ (v) = f...

A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید