نتایج جستجو برای: ricci curvature
تعداد نتایج: 44758 فیلتر نتایج به سال:
We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...
This is an expository article based on the author’s lecture delivered at the conference Lie Theory and Its Applications in March 2011, UCSD. We discuss various notions of positivity and their relations with the study of the Ricci flow, including a proof of the assertion, due to Wolfson and the author, that the Ricci flow preserves the positivity of the complex sectional curvature. We discuss th...
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
This text is a presentation of the general context and results of [Oll07] and [Oll09], with comments on related work. The goal is to present a notion of Ricci curvature valid on arbitrary metric spaces, such as graphs, and to generalize a series of classical theorems in positive Ricci curvature, such as spectral gap estimates, concentration of measure or log-Sobolev inequalities. The necessary ...
Abstract. Given a family of biholomorphisms φt on a noncompact complex manifold M , we provide conditions, on φt, under which M is biholomorphic to C. As an application, we generalize previous results in [1]. We prove that if (M, g) is a complete non-compact gradient Kähler-Ricci soliton with potential function f which is either steady with positive Ricci curvature so that the scalar curvature ...
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
In this paper we will give a rigorous proof of the lower bound for the scalar curvature of the standard solution of the Ricci flow conjectured by G. Perelman. We will prove that the scalar curvature R of the standard solution satisfies R(x, t) ≥ C0/(1−t) ∀x ∈ R , 0 ≤ t < 1, for some constant C0 > 0. Recently there is a lot of study of Ricci flow on manifolds by R. Hamilton [H1-6], S.Y. Hsu [Hs1...
We derive the entropy formula for the linear heat equation on general Riemannian manifolds and prove that it is monotone non-increasing on manifolds with nonnegative Ricci curvature. As applications, we study the relation between the value of entropy and the volume of balls of various scales. The results are simpler version, without Ricci flow, of Perelman’s recent results on volume non-collaps...
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
This text is a presentation of the general context and results of [Oll07] and the preprint [Oll-a], with comments on related work. The goal is to present a notion of Ricci curvature valid on arbitrary metric spaces, such as graphs, and to generalize a series of classical theorems in positive Ricci curvature, such as spectral gap estimates, concentration of measure or log-Sobolev inequalities. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید