نتایج جستجو برای: resolution equation
تعداد نتایج: 508054 فیلتر نتایج به سال:
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
We derive a modified form of the BFKL equation which enables the structure of the gluon emissions to be studied in small x deep inelastic scattering. The equation incorporates the resummation of the virtual and unresolved real gluon emissions. We solve the equation to calculate the number of small x deep-inelastic events containing 0, 1, 2 . . . resolved gluon jets, that is jets with transverse...
در این اثر ضمن بررسی مقدماتی جوشش جریان زیر سرد دو فازی و مطالعه اجمالی دینامیک حباب در محل تشکیل آن بر روی دیواره های تحت فلاکس حرارتی ثابت، جریان دو فازی زیر سرد در کانال جوشان در فشارهای پایین و به صورت دو بعدی شبیه سازی شده است. این تحلیل در بر دارنده پدیده پخش حبابها در عرض کانال نیز می باشد. معادلات جریان دو فازی با استفاده از متوسط گیری حجمی به دست آمده اند و با روش حجم محدود جداسازی و ...
In this paper, a complete analytical resolution of the one dimensional Burgers equation with the elastic forcing term -k2x + f(t), k is an element of R is presented. Two methods existing for the case K=0 are adapted and generalized using variable and functional transformations, valid for all values of space and time. The emergence of a Fokker-Planck equation in the method allows the establishme...
in this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. we utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. by using bernstein polynomial basis, the problem is transformed in...
The authors solve the Percus-Yevick equation in two dimensions by reducing it to a set of simple integral equations. They numerically obtain both the pair correlation function and the equation of state for a hard disk fluid and find good agreement with available Monte Carlo results. The present method of resolution may be generalized to any even dimension.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید