نتایج جستجو برای: regression tree
تعداد نتایج: 479803 فیلتر نتایج به سال:
Abstract In binary and ordinal regression one can distinguish between a location component scaling component. While the former determines within range of response categories, indicates variance heterogeneity. particular since it has been demonstrated that misleading effects occur if ignores presence component, is important to account for potential in model, which not possible available recursiv...
Recently ordinal regression has attracted much interest in machine learning. The goal of ordinal regression is to assign each instance a rank, which should be as close as possible to its true rank. We propose an effective tree-based algorithm, called Ranking Tree, for ordinal regression. The main advantage of Ranking Tree is that it can group samples with closer ranks together in the process of...
We consider the task of inferring associations between two differently-distributed and unlabelled sets of timbre data. This arises in applications such as concatenative synthesis/ audio mosaicing in which one audio recording is used to control sound synthesis through concatenating fragments of an unrelated source recording. Timbre is a multidimensional attribute with interactions between dimens...
Highly developed science and technology from the last two decades motivated the study of complex data objects. In this paper, we consider the topological properties of a population of tree-structured objects. Our interest centers on modeling the relationship between a tree-structured response and other covariates. For tree objects, this poses serious challenges since most regression methods rel...
A so-called fuzzy linear regression is used in dendroecology to model empirically tree growth as a function of a bioclimatic index representing the water stress, i.e., the ratio of actual evapotranspiration to potential evapotranspiration. The response function predicts tree growth as (fuzzy) intervals, narrow in the domain where the bioclimatic index is most limiting and becoming progressively...
This paper presents a study about functional models for regression tree leaves. We evaluate experimentally several alternatives to the averages commonly used in regression trees. We have implemented a regression tree learner (HTL) that is able to use several alternative models in the tree leaves. We study the effect on accuracy and the computational cost of these alternatives. The experiments c...
In this paper, we propose a model-based hierarchical clustering algorithm that automatically builds a regression class tree for the well-known speaker adaptation technique Maximum Likelihood Linear Regression (MLLR). When building a regression class tree, the mean vectors of the Gaussian components of the model set of a speaker independent CDHMMbased speech recognition system are collected as t...
Regression analysis is a machine learning approach that aims to accurately predict the value of continuous output variables from certain independent input variables, via automatic estimation of their latent relationship from data. Tree-based regression models are popular in literature due to their flexibility to model higher order non-linearity and great interpretability. Conventionally, regres...
Although regression trees were originally designed for large datasets, they can profitably be used on small datasets as well, including those from replicated or unreplicated complete factorial experiments. We show that in the latter situations, regression tree models can provide simpler and more intuitive interpretations of interaction effects as differences between conditional main effects. We...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید