نتایج جستجو برای: quadratic eigenvalue
تعداد نتایج: 64749 فیلتر نتایج به سال:
Quadratic pencils arising from applications are often inherently structured. Factors contributing to the structure include the connectivity of elements within the underlying physical system and the mandatory nonnegativity of physical parameters. For physical feasibility, structural constraints must be respected. Consequently, they impose additional challenges on the inverse eigenvalue problems ...
Quadratic eigenvalue problems involving large matrices arise frequently in areas such as the vibration analysis of structures, MEMS simulation, and the solution of quadratically constrained least squares problems. The typical approach is to solve the quadratic eigenvalue problem using a mathematically equivalent linearized formulation, resulting in a doubled dimension and a lack of backward sta...
Quadratic pencils arising from applications are often inherently structured. Factors contributing to the structure include the connectivity of elements within the underlying physical system and the mandatory nonnegativity of physical parameters. For physical feasibility, structural constraints must be respected. Consequently, they impose additional challenges on the inverse eigenvalue problems ...
We introduce several new results on the Quadratic Eigenvalue Complementarity Problem (QEiCP), focusing on the nonsymmetric case, i,e, without making symmetry assumptions on the matrices defining the problem. First we establish a new sufficient condition for existence of solutions of this problem, which is somewhat more manageable than previously existent ones. This condition works through the i...
We consider three parametric relaxations of the 0-1 quadratic programming problem. These relaxations are to: quadratic maximization over simple box constraints, quadratic maximization over the sphere, and the maximum eigenvalue of a bordered matrix. When minimized over the parameter, each of the relaxations provides an upper bound on the original discrete problem. Moreover, these bounds are eec...
In this paper, the solution of the symmetric Quadratic Eigenvalue Complementarity Problem (QEiCP) is addressed. The QEiCP has a solution provided the so-called co-regular and co-hyperbolic properties hold and is said to be symmetric if all the matrices involved in its definition are symmetric. We show that under the two conditions stated above the symmetric QEiCP can be reduced to the problem o...
We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify the available choices of methods and catalogue a...
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید