نتایج جستجو برای: pure shellable complex
تعداد نتایج: 870950 فیلتر نتایج به سال:
Let n,k,k and n,k,h , h < k, denote the intersection lattices of the k-equal subspace arrangement of type Dn and the k, h-equal subspace arrangement of type Bn respectively. Denote by SB n the group of signed permutations. We show that ( n,k,k )/SB n is collapsible. For ( n,k,h )/S B n , h < k, we show the following. If n ≡ 0 (mod k), then it is homotopy equivalent to a sphere of dimension 2n k...
Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...
We prove that if a simplicial complex ∆ is shellable, then the intersection lattice L∆ for the corresponding diagonal arrangement A∆ is homotopy equivalent to a wedge of spheres. Furthermore, we describe precisely the spheres in the wedge, based on the data of shelling. Also, we give some examples of diagonal arrangements A where the complement MA is K(π, 1), coming from rank 3 matroids.
Shellability is a well-known combinatorial criterion on a simplicial complex ∆ for verifying that the associated Stanley-Reisner ring k[∆] is Cohen-Macaulay. A notion familiar to commutative algebraists, but which has not received as much attention from combinatorialists as the Cohen-Macaulay property, is the notion of a Golod ring. Recently, Jöllenbeck introduced a criterion on simplicial comp...
For a simplicial complex 2 and coefficient domain F let F2 be the F-module with basis 2. We investigate the inclusion map given by : { [ _1+_2+_3+ } } } +_k which assigns to every face { the sum of the co-dimension 1 faces contained in {. When the coefficient domain is a field of characteristic p>0 this map gives rise to homological sequences. We investigate this modular homology for shellable ...
The Harary-Hill Conjecture states that the number of crossings in any drawing of the complete graph Kn in the plane is at least Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . In this paper, we settle the Harary-Hill conjecture for shellable drawings. We say that a drawing D of Kn is s-shellable if there exist a subset S = {v1, v2, . . . , vs} of the vertices and a region R of D with the fo...
We consider a simplicial complex generaliztion of a result of Billera and Meyers that every nonshellable poset contains the smallest nonshellable poset as an induced subposet. We prove that every nonshellable 2-dimensional simplicial complex contains a nonshellable induced subcomplex with less than 8 vertices. We also establish CL-shellability of interval orders and as a consequence obtain a fo...
After [4] the shellability of multicomplexes Γ is given in terms of some special faces of Γ called facets. Here we give a criterion for the shellability in terms of maximal facets. Multigraded pretty clean filtration is the algebraic counterpart of a shellable multicomplex. We give also a criterion for the existence of a multigraded pretty clean filtration.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید