نتایج جستجو برای: outer independent 2 rainbow dominating function

تعداد نتایج: 3798565  

Journal: :Theoretical Computer Science 2015

2009
Agelos Georgakopoulos Philipp Sprüssel

We (re-)prove that in every 3-edge-coloured tournament in which no vertex is incident with all colours there is either a cyclic rainbow triangle or a vertex dominating every other vertex monochromatically.

Journal: :Bulletin of The Iranian Mathematical Society 2021

A double Roman dominating function of a graph $G$ is $f:V(G)\rightarrow \{0,1,2,3\}$ having the property that for each vertex $v$ with $f(v)=0$, there exists $u\in N(v)$ $f(u)=3$, or are $u,w\in $f(u)=f(w)=2$, and if $f(v)=1$, then adjacent to assigned at least $2$ under $f$. The domination number $\gamma_{dR}(G)$ minimum weight $f(V(G))=\sum_{v\in V(G)}f(v)$ among all functions $G$. An outer i...

2013
Tingting Liu Yumei Hu

A tree T , in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the same color. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k vertices of G, there exists a rainbow tree T in G such that S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring of G is the k-rainbow index of G , denoted by rxk(G). ...

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

Journal: :Australasian J. Combinatorics 2012
Andrzej Wloch

A subset S ⊆ V (G) is an independent set of G if no two vertices of S are adjacent in G. A subset Q ⊆ V (G) is a 2-dominating set of G if each vertex from V (G)\Q has at least two neighbours in Q. We define new kind of kernels in graphs. Using existing concepts of an independent set and a 2-dominating set, we define in the natural way the concept of 2-dominating kernels in graphs. A subset J ⊂ ...

Journal: :Discrete Mathematics 2013
Timothy D. LeSaulnier Douglas B. West

Let G be an edge-colored graph with n vertices. A rainbow subgraph is a subgraph whose edges have distinct colors. The rainbow edge-chromatic number of G, written χ̂′(G), is the minimum number of rainbow matchings needed to cover E(G). An edgecolored graph is t-tolerant if it contains no monochromatic star with t+1 edges. If G is t-tolerant, then χ̂′(G) < t(t+ 1)n lnn, and examples exist with χ̂′(...

2014
Bhawani Sankar Panda Arti Pandey

A set D ⊆ V of a graph G = (V,E) is called an outer-connected dominating set of G if for all v ∈ V , |NG[v] ∩ D| ≥ 1, and the induced subgraph of G on V \D is connected. The Minimum Outer-connected Domination problem is to find an outer-connected dominating set of minimum cardinality of the input graph G. Given a positive integer k and a graph G = (V,E), the Outer-connected Domination Decision ...

1993
JOCHEN HARANT ANJA PRUCHNEWSKI MARGIT VOIGT

A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the notion of k-dominating ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید