نتایج جستجو برای: nonlinear volterra integral equations

تعداد نتایج: 520250  

Journal: :bulletin of the iranian mathematical society 2012
b. ‎babayar-razlighi karim ivaz m. r. mokhtarzadeh a. n. badamchizadeh

we reduce the two phase stefan problem with kinetic to a system of nonlinear volterra integral equations of second kind and apply newton's method to linearize it. we found product integration solution of the linear form. sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

A. Armand, Z. Gouyandeh

This paper presents a comparison between variational iteration method (VIM) and modfied variational iteration method (MVIM) for approximate solution a system of Volterra integral equation of the first kind. We convert a system of Volterra integral equations to a system of Volterra integro-di®erential equations that use VIM and MVIM to approximate solution of this system and hence obtain an appr...

Journal: :Appl. Math. Lett. 2008
Yadollah Ordokhani Mohsen Razzaghi

Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of Volterra–Fredholm–Hammerstein integral equations to the sol...

2013
Farshid Mirzaee Ali Akbar Hoseini

and hosti 013.02.0 Abstract A numerical method based on an NM-set of general, hybrid of block-pulse function and Taylor series (HBT), is proposed to approximate the solution of nonlinear Volterra–Fredholm integral equations. The properties of HBT are first presented. Also, the operational matrix of integration together with Newton-Cotes nodes are utilized to reduce the computation of nonlinear ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1393

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

2014
M. Roodaki Z. JafariBehbahani Z. JAFARIBEHBAHANI

Since various problems in science and engineering fields can be modeled by nonlinear Volterra-Fredholm integral equations, the main focus of this study is to present an effective numerical method for solving them. This method is based on the hybrid functions of Legendre polynomials and block-pulse functions. By using this approach, a nonlinear Volterra-Fredholm integral equation reduces to a no...

2015
VIRA BABENKO

We consider nonlinear integral equations of Fredholm and Volterra type with respect to functions having values in L-spaces. Such class of equations includes set-valued integral equations, fuzzy integral equations and many others. We prove theorems of existence and uniqueness of the solutions for such equations and investigate data dependence of their solutions.

D.‎‎ Nazari ‎Susahab‎ M. Jahanshahi,

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید