نتایج جستجو برای: non convex programming
تعداد نتایج: 1645741 فیلتر نتایج به سال:
multi objective quadratic fractional programming (moqfp) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the object...
In practical applications of mathematical programming it is frequently observed that the decision maker prefers apparently suboptimal solutions. A natural explanation for this phenomenon is that the applied mathematical model was not sufficiently realistic and did not fully represent all the decision makers criteria and constraints. Since multicriteria optimization approaches are specifically d...
In multiobjective optimisation, one of the most common ways of describing the decision makerÕs preferences is to assign targeted values (goals) to con ̄icting objectives as well as relative weights and priority levels for attaining the goals. In linear and convex decision situations, traditional goal programming provides a pragmatic and ̄exible manner to cater for the above preferences. In certa...
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
After a permanent fault occurs if it is not possible to supply the load in the network, the optimal load restoration scheme allows the system to restoration the load with the lowest exit cost, the lowest load interruption, and in the shortest possible time. This article introduces a new design called Smart Load Shedding, abbreviated SLS. In the proposed SLS scheme, the types of devices in smart...
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
Convex programming is a subclass of nonlinear programming (NLP) that unifies and generalizes least squares (LS), linear programming (LP), and convex quadratic programming (QP). This generalization is achieved while maintaining many of the important, attractive theoretical properties of these predecessors. Numerical algorithms for solving convex programs are maturing rapidly, providing reliabili...
In this article, we study a class of posynomial geometric programming problem (PGPF), with the purpose of minimizing a posynomial subject to fuzzy relational equations with max–product composition. With the help of auxiliary variables, it is converted convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. Some pr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید