نتایج جستجو برای: neural network rfnn

تعداد نتایج: 832184  

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

Journal: :پژوهش های حفاظت آب و خاک 0

infiltration rate is one of the most important soil physical parameters and is a basic input data in irrigation and drainage projects. although, a number of theoretical or experimental based equations are presented to describe this phenomenon but the evaluation of some new sciences such as artificial neural networks, for prediction of the phenomenon can be investigated. generally, the infiltrat...

Journal: :کشاورزی (منتشر نمی شود) 0
سید میثم مظلوم زاده مربی، دانشکده کشاورزی سراوان، دانشگاه سیستان و بلوچستان، سیستان و بلوچستان سید ناصر علوی استادیار، گروه مکانیک ماشین های کشاورزی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان مجتبی نوری دانشجوی دکترای مهندسی منابع آب، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

in this study the wavelet neural network (wnn) and artificial neural network (ann) were used to simulate barley breakage percentage in combine harvester. the models have been trained using the same data conditions. air temperature, thresher cylinder speed, distance between thresher cylinder and concave (back and forth) and the percentage of barely moisture were as the input variables. the resul...

Journal: :international journal of advanced biological and biomedical research 2013
amir hossein hashemian behrouz beiranvand mansour rezaei abdolrasoul bardideh eghbal zand-karimi

cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. in recent decades, artificial neural network model has been increasingly applied to predict survival data. this research was conducted to compare cox regression and artificial neural network models in prediction of kidney transplant survival. the prese...

In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...

Journal: :journal of artificial intelligence in electrical engineering 2014
zolekh teadadi hassan changiziyan

in the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. one of the most common types of dg technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone studies the dynamic behavior andstability of the power grid is of crucial importance. these studies need to know the exact mo...

Sh Gharibzadeh B Saboori R Azadi SM Aghdaee

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

Journal: :international economics studies 0
مهدی احراری حجت الله غنیمی فرد حمید ابریشمی زهرا رحیمی

â â â â â â â  this paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and gdp of the us, as the largest oil consumer, and the uk, as the oil producer. gmdh neural network and mlff neural network approaches, which are both non-linear models, are employed to forecast gdp responses to the oil price changes. the resul...

Journal: :journal of computer and robotics 0
mohammad talebi motlagh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran hamid khaloozadeh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran

modelling and forecasting stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. this nonlinearity affects the efficiency of the price characteristics. using an artificial neural network (ann) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

Journal: :pollution 2015
zahra zangeneh sirdari aminuddin ab. ghani nasim zangeneh sirdari

bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. in this study, measured bedload by helley- smith sampler was used to estimate the bedload transport of kurau river in malaysia. an artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->