نتایج جستجو برای: n jordan homomorphism
تعداد نتایج: 991488 فیلتر نتایج به سال:
In this article, the notion of $n-$derivation is introduced for all integers $ngeq 2$. Although all derivations are $n-$derivations, in general these notions are not equivalent. Some properties of ordinary derivations are investigated for $n-$derivations. Also, we show that under certain mild condition $n-$derivations are derivations.
In this paper we study the notion of Smarandache loops. We obtain some interesting results about them. The notion of Smarandache semigroups homomorphism is studied as well in this paper. Using the definition of homomorphism of Smarandache semigroups we give the classical theorem of Cayley for Smarandache semigroups. We also analyze the Smarandache loop homomorphism. We pose the problem of findi...
Let $A$ be an algebra over a field $F$ with $(F)\ne 2$. If is generated as by $[[A,A],[A,A]]$, then for every skew-symmetric bilinear map $\Phi:A\times A\to X$, where $X$ arbitrary vector space $F$, the condition that $\Phi(x^2,x)=0 $ all $x\in A$ implies $\Phi(xy,z) +\Phi(zx,y) + \Phi(yz,x)=0$ $x,y,z\in A$. This applicable to question of whether zero Lie product determined and also used in pro...
A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is ‘sub-logarithmic’, then the range of such a homomorphism is super-constant. Furthermore, some exam...
begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}
This theory provides a compact formulation of Gauss-Jordan elimination for matrices represented as functions. Its distinctive feature is succinctness. It is not meant for large computations. 1 Gauss-Jordan elimination algorithm theory Gauss-Jordan-Elim-Fun imports Main begin Matrices are functions: type-synonym ′a matrix = nat ⇒ nat ⇒ ′a In order to restrict to finite matrices, a matrix is usua...
1. Abstract characterization of Dn The group Dn has two generators r and s with orders n and 2 such that srs−1 = r−1. We will show any group with a pair of generators like r and s (except for their order) admits a homomorphism onto it from Dn, and is isomorphic to Dn if it has the same size as Dn. Theorem 1.1. Let G be generated by elements a and b where an = 1 for some n ≥ 3, b2 = 1, and bab−1...
For any abelian Polish σ-compact group H there exist an Fσ ideal Z ⊆ P (N) and a Borel Z -approximate homomorphism f : H → HN which is not Z -approximable by a continuous true homomorphism g : H → HN .
This paper concerns a relationship between soft sets and n-ary polygroups. We consider the notion of an n-ary polygroup as a generalization of a polygroup and apply the notion of soft sets to n-ary polygroups. Some related notions are defined and several basic properties are discussed by using the soft set theory. Furthermore, we propose the homomorphism of n-ary polygroups and investigate the ...
A Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید