نتایج جستجو برای: multifractal

تعداد نتایج: 3148  

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2010
John Martin Ignacio García-Mata Olivier Giraud Bertrand Georgeot

We study numerically multifractal properties of two models of one-dimensional quantum maps: a map with pseudointegrable dynamics and intermediate spectral statistics and a map with an Anderson-like transition recently implemented with cold atoms. Using extensive numerical simulations, we compute the multifractal exponents of quantum wave functions and study their properties, with the help of tw...

2004
Ajay Chaudhari Ching-Cher Sanders Yan Shyi-Long Lee

Multifractal scaling analysis is applied to the growing surfaces of random deposition model. The effect of number of deposited particles and lattice size on multifractal spectra is studied. Three cases of the growing surfaces are considered: (1) Same total number of particles deposited on different square lattice so that the number of particles deposited per surface site is different. (2) Diffe...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2010
Gao-Feng Gu Wei-Xing Zhou

The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a parameter θ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measu...

2014
Enrico Maiorino Lorenzo Livi Alessandro Giuliani Alireza Sadeghian Antonello Rizzi

The multifractal detrended fluctuation analysis of time series is able to reveal the presence of longrange correlations and, at the same time, to characterize the self-similarity of the series. The rich information derivable from the characteristic exponents and the multifractal spectrum can be further analyzed to discover important insights about the underlying dynamical process. In this paper...

1997
LUIS BARREIRA YAKOV PESIN

We discuss a general concept of multifractality, and give a complete description of the multifractal spectra for Gibbs measures on two-dimensional horseshoes. We discuss a multifractal characterization of surface diffeomorphisms.

2001
LUIS BARREIRA

For hyperbolic diffeomorphisms, we describe the variational properties of the dimension spectrum of equilibrium measures on locally maximal hyperbolic sets, when the measure or the dynamical system are perturbed. We also obtain explicit expressions for the first derivative of the dimension spectra and the associated Legendre transforms. This allows us to establish a local version of multifracta...

2011
VAUGHN CLIMENHAGA

Most results in multifractal analysis are obtained using either a thermodynamic approach based on existence and uniqueness of equilibrium states or a saturation approach based on some version of the specification property. A general framework incorporating the most important multifractal spectra was introduced by Barreira and Saussol, who used the thermodynamic approach to establish the multifr...

2012
Espen A. F. Ihlen

Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The t...

Journal: :IEEE Trans. Geoscience and Remote Sensing 2002
Magda El-Shenawee

It is now clear that natural texture images can be discriminated by multifractal exponents. Most natural images, such as geographical images , are all textural in nature. In remote sensing images, different regions possess different texture and have different multifractal exponents. These properties are thus ideal for use in image segmentation. Like fractal dimensions, multifractal exponents ar...

2007
Shubhankar Chatterjee Mike H. MacGregor Stephen Bates

Long-range dependence (LRD) or second-order self-similarity has been found to be an ubiquitous feature of internet traffic. In addition, several traffic data sets have been shown to possess multifractal behavior. In this paper, we present an algorithm to generate traffic traces that match the LRD and multifractal properties of the parent trace. Our algorithm is based on the decorrelating proper...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->