نتایج جستجو برای: missing at random

تعداد نتایج: 3947812  

ژورنال: طلوع بهداشت یزد 2018

Introduction: The aim  of  this  study  was to impute missing data  and  to compare the effect  of  different doses of  vitamin D supplementation on  insulin resistance during  pregnancy. Methods: A clinical trial  study   was done on 104  women  with diabetes and gestational age less than 12 weeks between 1391 and...

Journal: :The International Journal of Biostatistics 2016

2010
Peng Lai Qihua Wang

This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are...

2013
Francesco Bravo

This paper considers partially linear varying coefficient models when the response variable is missing at random. The paper uses imputation techniques to develop an omnibus specification test. The test is based on a simple modification of a Cramer von Mises functional that overcomes the curse of dimensionality often associated with the standard Cramer von Mises functional. The paper also consid...

2004
John B. Copas

This paper provides further insight into the key concept of missing at random (MAR) in incomplete data analysis. Following the usual selection modelling approach we envisage two models with separable parameters: a model for the response of interest and a model for the missing data mechanism (MDM). If the response model is given by a complete density family, then frequentist inference from the l...

2015
URSULA U. MÜLLER ANTON SCHICK

We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the conditional distribution of Y given X can be estimated efficiently using complete case analysis, i.e., one can simply omit incomplete cases and work with an appropriate efficient estimator ...

2016

Bayesian single index model is a highly promising dimension reduction tool for an interpretable modeling of the non linear relationship between the response and its predictors. However, existing Bayesian tools in this area suffer from slow mixing of the Markov Chain Monte Carlo (MCMC) computational tool and also lack the ability to deal with missing covariates. To circumvent these practical pro...

2017
Kim May Lee Robin Mitra Stefanie Biedermann

The presence of missing values complicates statistical analyses. In design of experiments, missing values are particularly problematic when constructing optimal designs, as it is not known which values are missing at the design stage. When data are missing at random it is possible to incorporate this information into the optimality criterion that is used to find designs; Imhof, Song, and Wong (...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید