نتایج جستجو برای: metric spaces
تعداد نتایج: 200511 فیلتر نتایج به سال:
The aim of this paper is to study induced (quasi-)uniformities in Kramosil and Michalek's fuzzy metric spaces. Firstly, $I$-uniformity in the sense of J. Guti'{e}rrez Garc'{i}a and $I$-neighborhood system in the sense of H"{o}hle and u{S}ostak are induced by the given fuzzy metric. It is shown that the fuzzy metric and the induced $I$-uniformity will generate the same $I$-neighborhood system. ...
In this paper, we introduce fruitful concepts of common limit range and joint common limit range for coupled mappings on modified intuitionistic fuzzy metric spaces. An illustrations are also given to justify the notion of common limit range and joint common limit range property for coupled maps. The purpose of this paper is to prove fixed point results for coupled mappings on modified intuitio...
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
we consider the concept of fuzzy quasi-contractions initiated by '{c}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{h}$-contractive mappings on m-complete fuzzy metric spaces in the sense of george and veeramani.the results are illustrated by a representative example.
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
In this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. In particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
in this paper, some recent results established by marin borcut [m. borcut, tripled fixed point theorems for monotone mappings in partially ordered metric spaces, carpathian j. math. 28, 2 (2012), 207--214] and [m. borcut, tripled coincidence theorems for monotone mappings in partially ordered metric spaces, creat. math. inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...
in this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. our results generalize kannan and chatterjea fixed point theorems on complete $b$-metric spaces. in particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. we also give some examples to illustrate the given results.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید