نتایج جستجو برای: maximal non primary ideal
تعداد نتایج: 2021226 فیلتر نتایج به سال:
In this article, we have characterized ideals in $C(X)$ in which every ideal is also an ideal (a $z$-ideal) of $C(X)$. Motivated by this characterization, we observe that $C_infty(X)$ is a regular ring if and only if every open locally compact $sigma$-compact subset of $X$ is finite. Concerning prime ideals, it is shown that the sum of every two prime (semiprime) ideals of e...
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
A natural generalization of Cohen's set of forcing conditions (the t w ~ valued functions with domain a finite subset of w) is the set of twovalued functions with domain an element of an ideal J on ~. The I~roblem treated in this paper is to determine when such forcing yields a generic real of minimal degree of constructibility. A :;imple decomposition argument shows that the non-maximality of ...
Introduction. L. Fuchs [2 ] has given for Noetherian rings a theory of the representation of an ideal as an intersection of primal ideals, the theory being in many ways analogous to the classical Noether theory. An ideal Q is primal if the elements not prime to Q form an ideal, necessarily prime, called the adjoint of Q. Primary ideals are necessarily primal, but not conversely. Analogous resul...
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
Let A be a Noetherian local ring with the maximal ideal m and an m-primary ideal J . Let F = {In}n≥0 be a good filtration of ideals in A. Denote by FJ (F) = ⊕ n≥0 (In/JIn)t n the fiber cone of F with respect to J. The paper characterizes the multiplicity and the CohenMacaulayness of FJ (F) in terms of minimal reductions of F .
We extend the Gröbner basis theory developed in [10, 11] to certain non-homogeneous, locally filtered finitely generated ideals in R0 , and to certain admissible orders. The main tool used is the study of two homogeneous ideals that may be associated to an ideal I R0 , namely the ideal grT (I) generated by all homogenous components of maximal degree of elements in I , and the “homogenized” idea...
We investigate monomial labellings on cell complexes, giving a minimal cellular resolution of the ideal generated by these monomials, and such that the associated quotient ring is Cohen-Macaulay. We introduce a notion of such a labelling being maximal. There is only a finite number of maximal labellings for each cell complex, and we classify these for trees, partly for subdivisions of polygons,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید