نتایج جستجو برای: magnaporthe grisea

تعداد نتایج: 1778  

2014
Raimundo Wagner de S. Aguiar Marcio A. Ootani Sérgio Donizeti Ascencio Talita P. S. Ferreira Manoel M. dos Santos Gil R. dos Santos

Corymbia citriodora and Cymbopogon nardus essential oils samples were analyzed by GC and GC-MS and their qualitative and quantitative compositions established. The main component of essential oils of C. citriodora and C. nardus was citronellal, at 61.78% and 36.6%, respectively. The essential oils and citronellal were tested for their fumigant antifungal activity against Pyricularia (Magnaporth...

Journal: :Molecular plant-microbe interactions : MPMI 2006
David De Vleesschauwer Pierre Cornelis Monica Höfte

Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyan...

Journal: :Science 2006
Claire Veneault-Fourrey Madhumita Barooah Martin Egan Gavin Wakley Nicholas J Talbot

Rice blast is caused by the fungus Magnaporthe grisea, which elaborates specialized infection cells called appressoria to penetrate the tough outer cuticle of the rice plant Oryza sativa. We found that the formation of an appressorium required, sequentially, the completion of mitosis, nuclear migration, and death of the conidium (fungal spore) from which the infection originated. Genetic interv...

Journal: :The Plant cell 2001
P V Balhadère N J Talbot

Plant infection by the rice blast fungus Magnaporthe grisea is brought about by the action of specialized infection cells called appressoria. These infection cells generate enormous turgor pressure, which is translated into an invasive force that allows a narrow penetration hypha to breach the plant cuticle. The Magnaporthe pde1 mutant was identified previously by restriction enzyme-mediated DN...

Journal: :The Plant cell 2002
Muriel C Viaud Pascale V Balhadère Nicholas J Talbot

Cyclophilins are peptidyl prolyl cis-trans isomerases that are highly conserved throughout eukaryotes and that are best known for being the cellular target of the immunosuppressive drug cyclosporin A (CsA). The activity of CsA is caused by the drug forming a complex with cyclophilin A and inhibiting the calmodulin-dependent phosphoprotein phosphatase calcineurin. We have investigated the role o...

Journal: :Mycologia 2002
Kirk J Czymmek Timothy M Bourett James A Sweigard Anne Carroll Richard J Howard

The subcellular expression patterns and fluorescence intensities of cytoplasm-targeted, constitutively expressed blue-, cyano-, green-, yellow- and red-fluorescent protein were assessed in a number of transformants of the blast pathogen, Magnaporthe grisea. All transformants grew normally, remained pathogenic on barley, and, except for those expressing blue fluorescent protein, exhibited signif...

2007
Pari Skamnioti Sarah J. Gurr

The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cuti...

Journal: :Eukaryotic cell 2004
Kenneth S Bruno Fernando Tenjo Lei Li John E Hamer Jin-Rong Xu

A mitogen-activated protein (MAP) kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphal growth in the rice blast fungus Magnaporthe grisea. In this study, we constructed a green fluorescent protein gene-PMK1 fusion (GFP-PMK1) to examine the expression and localization of PMK1 in M. grisea during infection-related morphogenesis. The GFP-PMK1 fusion encoded a functi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید