نتایج جستجو برای: kessel clustering algorithm
تعداد نتایج: 824731 فیلتر نتایج به سال:
Image segmentation is a process by which an image is partitioned into regions with similar features. Many approaches have been proposed for color image segmentation, but Fuzzy C-Means has been widely used, because it has a good performance in a large class of images. However, it is not adequate for noisy images and it also takes more time for execution as compared to other method as K-means. Fo...
Fuzzy theory appears to be extremely effective at handling dynamic, non-linear and noisy data, especially when the underlying physical relationships are not fully understood. Since hydrologists are still uncertain about many of the aspects of the physical processes in the watershed, fuzzy theory has proved to be a very attractive tool enabling them to investigate such problems. The effectivenes...
Clustering is a very useful technique which helps to enrich the semantics of the data by revealing patterns in large collections of poly-dimensional data. Moreover the fuzzy approach in clustering provides flexibility and enhanced modeling capability, as the results are expressed in soft clusters, allowing partial memberships of data points in the clusters. During the last decade, the digitaliz...
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
vehicular ad-hoc network (vanet) is an important component of intelligent transportation systems, in which vehicles are equipped with on-board computing and communication devices which enable vehicle-to-vehicle communication. consequently, with regard to larger communication due to the greater number of vehicles, stability of connectivity would be a challenging problem. clustering technique as ...
Clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. K-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. In recent years, several algorithms are provided based on evolutionary algorithms for cluster...
clustering technique is one of the most important techniques of data mining and is the branch of multivariate statistical analysis and a method for grouping similar data in to same clusters. with the databases getting bigger, the researchers try to find efficient and effective clustering methods so that they can make fast and real decisions. thus, in this paper, we proposed an improved ant syst...
The detection performance of maritime radars is restricted by the unwanted sea echo or clutter. Although the number of these target-like data is small, they may cause false alarm and perturb the target detection. K-distribution is known as the best fit probability density function for the radar sea clutter. This paper proposes a novel approach to estimate the parameters of K-distribution, based...
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید