نتایج جستجو برای: kernel estimator
تعداد نتایج: 78705 فیلتر نتایج به سال:
Abstract. We study an estimator for smoothing irregularly sampled data into a smooth map. The estimator has been widely used in astronomy, owing to its low level of noise; it involves a weight function – or smoothing kernel – w(θ). We show that this estimator is not unbiased, in the sense that the expectation value of the smoothed map is not the underlying process convolved with w, but a convol...
This paper considers estimation of a continuous bounded probability density when observations from the density are contaminated by additive measurement errors having a known distribution. Properties of the estimator obtained by deconvolving a kernel estimator of the observed data are investigated. When the kernel used is sufficiently smooth the deconvolved estimator is shown to be pointwise con...
We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya–Watson kernel estimator based on t...
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary α-mixing process. We derive the mean integrated squared er...
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary α-mixing process. We derive the mean integrated squared er...
The nonparametric estimation of the regression function of a real-valued random variable Y on a random object X valued in a closed Riemannian manifold M is considered. A regression estimator which generalizes kernel regression estimators on Euclidean sample spaces is introduced. Under classical assumptions on the kernel and the bandwidth sequence, the asymptotic bias and variance are obtained, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید