نتایج جستجو برای: inexact search directions
تعداد نتایج: 387345 فیلتر نتایج به سال:
This paper presents new approaches for supporting string similarity matching based on a combination of techniques from the fields of information technology and computational linguistics to achieve better results regarding accuracy and efficiency. The homogenization of plain text reduces the volume of index structures and concurrently increases the quality of hit-lists. Furthermore it shows the ...
This paper, which introduces the destination of one dimensional search, search interval and solving method, improves on the basic method and builds faster method of one dimensional search which includes inexact research and exact research. And then this paper concludes the method of global optimization and makes a further contrast and discuss about its convergence .At the last, this paper check...
There has been much recent interest in finding unconstrained local minima of smooth functions, due in part of the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a perspective. More recent proposa...
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
The paper presents a semismooth inexact Newton-type method for solving optimal power flow (OPF) problem. By introducing the nonlinear complementarity problem (NCP) function, the Karush-KuhnTucker (KKT) conditions of OPF model are transformed equivalently into a set of semismooth nonlinear algebraic equations. Then the set of semismooth equations can be solved by an improved inexact LevenbergMar...
In this paper, we consider smooth convex optimization problems with simple constraints and inexactness in the oracle information such as value, partial or directional derivatives of the objective function. We introduce a unifying framework, which allows to construct different types of accelerated randomized methods for such problems and to prove convergence rate theorems for them. We focus on a...
This paper deals with an algorithm incorporating the interior point method into the Dantzig-Wolfe decomposition technique for solving large-scale linear programming problems. The algorithm decomposes a linear program into a main problem and a subprob-lem. The subproblem is solved approximately. Hence, inexact Newton directions are used in solving the main problem. We show that the algorithm is ...
Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained opti...
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
A new smoothing algorithm for the solution of nonlinear complementarity problems (NCP) is introduced in this paper. It is based on semismooth equation reformulation of NCP by Fischer–Burmeister function and its related smooth approximation. In each iteration the corresponding linear system is solved only approximately. Since inexact directions are not necessarily descent, a nonmonotone techniqu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید