نتایج جستجو برای: hopf algebras
تعداد نتایج: 50155 فیلتر نتایج به سال:
Let H be a finite-dimensional Hopf algebra over an algebraically closed field of characteristic 0. If H is not semisimple and dim(H) = 2n for some odd integer n, then H or H * is not unimodular. Using this result, we prove that if dim(H) = 2p for some odd prime p, then H is semisimple. This completes the classification of Hopf algebras of dimension 2p. In recent years, there has been some progr...
This exposition concerns two different notions of Frobenius-Schur indicators for finite-dimensional Hopf algebras. These two versions of indicators coincide when the underlying Hopf algebra is semisimple. We are particularly interested in the family of pivotal finite-dimensional Hopf algebras with unique pivotal element; both indicators are gauge invariants of this family of Hopf algebras. We o...
Most of pointed Hopf algebras of dimension p with large coradical are shown to be generalized path algebras. By the theory of generalized path algebras it is obtained that the representations, homological dimensions and radicals of these Hopf algebras. The relations between the radicals of path algebras and connectivity of directed graphs are given. 2000 Mathematics subject Classification: 16w3...
In an attempt to study the zero divisors in Hopf algebras, we study four non-trivial examples of nongroup ring infinite Hopf algebras and show that a variant of Kaplansky’s classical zero divisor conjecture holds for these four Hopf algebras. In particular we proof that the Hopf algebra CG has no non-trivial zero-divisors for any infinite finitely generated group G. We then consider the zero di...
We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” supe...
We outline a theory of quantum algebras and coalgebras and their resulting invariants of unoriented 1–1 tangles, knots and links, we outline a theory of oriented quantum algebras and coalgebras and their resulting invariants of oriented 1–1 tangles, knots and links, and we show how these algebras and coalgebras are related. Quasitriangular Hopf algebras are examples of quantum algebras and orie...
We give the classification of quiver Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld modules and their corresponding Nichols algebras. In particular, we give the classification of graded Hopf algebras on cotensor coalgebra T c kG(M) of kG-bicomdule M over finite commutative gr...
Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras L n≥0 An can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of al...
The category of group-graded modules over an abelian group G is a monoidal category. For any bicharacter of G this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have n-ary multiplications between various graded components. They possess universal enveloping algeb...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید