نتایج جستجو برای: hierarchical bayes modeling
تعداد نتایج: 490045 فیلتر نتایج به سال:
The Bayes factor is employed to select covariates for a hierarchical model applied to a collection of hospital admission counts. Integrals representing the Bayes factor numerator and denominator marginal probabilities are intractable for the model used. We examine three approaches to integral approximation: Laplace approximation, Monte Carlo integration, and a Markov chain Monte Carlo (MCMC) ap...
Bayesian methods based on hierarchical mixture models have demonstrated excellent mean squared error properties in constructing data dependent shrinkage estimators in wavelets, however, subjective elicitation of the hyperparameters is challenging. In this chapter we use an Empirical Bayes approach to estimate the hyperparameters for each level of the wavelet decomposition, bypassing the usual d...
Abstract: We investigate the frequentist properties of Bayesian procedures for estimation and uncertainty quantification based on the horseshoe prior. We consider the sparse multivariate mean model and consider both the hierarchical Bayes method of putting a prior on the unknown sparsity level and the empirical Bayes method with the sparsity level estimated by maximum marginal likelihood. We sh...
Hierarchical models are widely used in medical research to structure complicated models and produce statistical inferences. In a hierarchical model, observations are sampled conditional on some parameters and these parameters are sampled from a common prior distribution. Bayes and empirical Bayes (EB) methods have been effectively applied in analyzing these models. Despite many successes, param...
Several methods have been proposed to infer the states at the ancestral nodes on a phylogeny. These methods assume a specific tree and set of branch lengths when estimating the ancestral character state. Inferences of the ancestral states, then, are conditioned on the tree and branch lengths being true. We develop a hierarchical Bayes method for inferring the ancestral states on a tree. The met...
conclusions it was noted that a relatively high prevalence of growth failure was observed in the study sample. for minimizing the impact of significant risk factors on growth failure, the early detection of growth failure and its risk indicators is of great importance. in addition, when the focus of the analysis is on the different nested sources of variability and the data has a hierarchical s...
In this paper we discuss how machine learning, and specifically how naive Bayes classifiers, can be used for user modeling tasks. We argue that in general, machine learning techniques should be used to improve a user modeling system’s interactions with users. We further argue that a naive Bayes classifier is a reasonable approach to many user modeling problems, given its advantages of quick lea...
For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید