نتایج جستجو برای: genetic and pso algorithms
تعداد نتایج: 16919122 فیلتر نتایج به سال:
in this paper a new strategy is proposed to design a fixed-structure robust controller for a flexible beam. robust controller designed by the conventional loop shaping method is not appropriate for a beam because of its high order and complicated form. fixed-structure loop shaping control in conjunction with particle swarm optimization (pso)algorithm is used to overcome this drawback. the ...
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic ...
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm (PLTVACIW-PSO). Its designed has introduced the benefits Parallel computing into combined power TVAC (Time-Variant Coefficients) IW (Inertial Weight). Proposed been tested against linear, non-linear, traditional, multiswarm based optimization algorithms. An...
Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can ...
Quad rotor is a renowned underactuated Unmanned Aerial Vehicle (UAV) with widespread military and civilian applications. Despite its simple structure, the vehicle suffers from inherent instability. Therefore, control designers always face formidable challenge in stabilization and control goal. In this paper fuzzy membership functions of the quad rotor’s fuzzy controllers are optimized using nat...
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
-A novel approach for the implementation of Nonlinear Model Predictive Control (NMPC) using Particle Swarm Optimization (PSO) technique is proposed. Two different approaches are made in the PSO algorithms, Random PSO (RPSO) and knowledge based PSO (KPSO) for the determination of optimum controller gain in MPC structure In order to test the performance of the proposed PSO based MPC system a nonl...
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید