نتایج جستجو برای: fully fuzzy linearsystems
تعداد نتایج: 314033 فیلتر نتایج به سال:
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
In this paper, a numerical method for nding minimal solution of a mn fullyfuzzy linear system of the form Ax = b based on pseudo inverse calculation,is given when the central matrix of coecients is row full rank or column fullrank, and where A~ is a non-negative fuzzy mn matrix, the unknown vectorx is a vector consisting of n non-negative fuzzy numbers and the constant b isa vector consisting o...
Abstract In this paper we have investigated a fuzzy linear programming problem with fuzzy quantities which are LR triangular fuzzy numbers. The given linear programming problem is rearranged according to the satisfactory level of constraints using breaking point method. By considering the constraints, the arranged problem has been investigated for all optimal solutions connected with satisf...
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید