In this paper, we study the concentration and multiplicity of solutions to following fractional Schr\"{o}dinger-Poisson system \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta)^su+V(x)u+\phi u=f(u)+u^{2_s^{\ast}-1} & \hbox{in $\mathbb{R}^3$,} \varepsilon^{2t}(-\Delta)^t\phi=u^2, u>0& \end{array} \right. \end{equation*} where $s>\frac{3}{4}$, $s,t\in(0,1)$, $\varepsilon>0$ is...