نتایج جستجو برای: for minimum mahalanobis distance 91 and 90
تعداد نتایج: 19105973 فیلتر نتایج به سال:
the objective of this research was to determine the best model and compare performances in terms of producing landuse maps from six supervised classification algorithms. as a result, different algorithms such as the minimum distance ofmean (mdm), mahalanobis distance (md), maximum likelihood (ml), artificial neural network (ann), spectral anglemapper (sam), and support vector machine (svm) were...
Image segmentation is the classification of data sets into group of similar data points. This article proposed a method to determine the winner unit by self organizing mapping network. The distance between the input vector and the weight vector has been determined by mahalanobis distance and chooses the unit whose weight vector has the smallest mahalanobis distance from the input vector. The re...
Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...
In this study, a Mahalanobis distance (MD)-based anomaly detection approach has been evaluated for non-punch through (NPT) and trench field stop (FS) insulated gate bipolar transistors (IGBTs). The IGBTs were subjected to electrical–thermal stress under a resistive load until their failure. Monitored on-state collector–emitter voltage and collector–emitter currents were used as input parameters...
A distance for mixed nominal, ordinal and continuous data is developed by applying the Kullback–Leibler divergence to the general mixed-data model, an extension of the general location model that allows for ordinal variables to be incorporated in the model. The distance obtained can be considered as a generalization of the Mahalanobis distance to data with a mixture of nominal, ordinal and cont...
To classify time series by nearest neighbors, we need to specify or learn one or several distance measures. We consider variations of the Mahalanobis distance measures which rely on the inverse covariance matrix of the data. Unfortunately — for time series data — the covariance matrix has often low rank. To alleviate this problem we can either use a pseudoinverse, covariance shrinking or limit ...
The supervised self-organizing map consists in associating output vectors to input vectors through a map, after self-organizing it on the basis of both input and desired output given altogether. This paper compares the use of Euclidian distance and Mahalanobis distance for this model. The distance comparison is made on a data classification application with either global approach or partitionin...
Title of Document: DEVELOPMENT OF DIAGNOSTIC AND PROGNOSTIC METHODOLOGIES FOR ELECTRONIC SYSTEMS BASED ON MAHALANOBIS DISTANCE Sachin Kumar, Doctor of Philosophy (Ph.D.), 2009 Directed By: Chair Professor, Michael Pecht, Department of Mechanical Engineering Diagnostic and prognostic capabilities are one aspect of the many interrelated and complementary functions in the field of Prognostic and H...
Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (l...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید