نتایج جستجو برای: f kannan operator
تعداد نتایج: 393435 فیلتر نتایج به سال:
where dA is the normalized area measure in D. The case where α = 0 is known as the (unweighted) Bergman space, often simply denoted by A2. Let φ be an analytic map from the open unit disk D into itself. The operator that takes the analytic map f to f ◦ φ is a composition operator and is denoted by Cφ . A natural generalization of a composition operator is an operator that takes f to ψ · f ◦ φ, ...
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
We introduce the Shepard–Bernoulli operator as a combination of the Shepard operator with a new univariate interpolation operator: the generalized Taylor polynomial. Some properties and the rate of convergence of the new combined operator are studied and compared with those given for classical combined Shepard operators. An application to the interpolation of discrete solutions of initial value...
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
Recently, José R. Morales and Edixon Rojas [José R. Morales and Edixon Rojas, Cone metric spaces and fixed point theorems of T -Kannan contractive mappings, Int. J. Math. Anal. 4 (4) (2010) 175–184] proved fixed point theorems for T -Kannan and T -Chatterjea contractions in conemetric spaces when the underlying cone is normal. The aim of this paper is to prove this without using the normality c...
Let F (uε) + ε(uε − w) = 0 (1) where F is a nonlinear operator in a Hilbert space H, w ∈ H is an element, and ε > 0 is a parameter. Assume that F (y) = 0, and F ′(y) is not a boundedly invertible operator. Sufficient conditions are given for the existence of the solution to (1) and for the convergence limε→0 ‖uε−y‖ = 0. An example of applications is considered. In this example F is a nonlinear ...
In this paper we prove a discrete version of Tanaka’s Theorem [19] for the Hardy-Littlewood maximal operator in dimension n = 1, both in the non-centered and centered cases. For the non-centered maximal operator f M we prove that, given a function f : Z→ R of bounded variation, Var(f Mf) ≤ Var(f), where Var(f) represents the total variation of f . For the centered maximal operator M we prove th...
We characterize when a Hankel operator and a Toeplitz operator have a compact commutator. Let dσ(w) be the normalized Lebesgue measure on the unit circle ∂D. The Hardy space H is the subspace of L(∂D, dσ), denoted by L, which is spanned by the space of analytic polynomials. So there is an orthogonal projection P from L onto the Hardy space H, the so-called Hardy projection. Let f be in L∞. The ...
The terminology and notation used here are introduced in the following articles: [18], [8], [20], [5], [7], [6], [3], [1], [17], [13], [19], [14], [2], [4], [15], [10], [11], [9], and [12]. One can prove the following propositions: (1) Let X, Y , Z be complex linear spaces, f be a linear operator from X into Y , and g be a linear operator from Y into Z. Then g · f is a linear operator from X in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید