نتایج جستجو برای: error back propagation algorithm

تعداد نتایج: 1172470  

2017
Hussien Ibrahim Zahraa Elsayed Mohamed

Improving the efficiency and convergence rate of the Multilayer Backpropagation Neural Network Algorithms is an important area of research. The last researches have witnessed an increasing attention to entropy based criteria in adaptive systems. Several principles were proposed based on the maximization or minimization of cross entropy function. One way of entropy criteria in learning systems i...

2012
Taranpreet Singh Ruprah

This paper is proposed the face recognition method using PCA with neural network back error propagation learning algorithm .In this paper a feature is extracted using principal component analysis and then classification by creation of back propagation neural network. We run our algorithm for face recognition application using principal component analysis, neural network and also calculate its p...

Journal: :CoRR 2015
D. V. Negrov I. M. Karandashev V. V. Shakirov Yu. A. Matveyev Witali L. Dunin-Barkowski A. V. Zenkevich

A possible method for hardware implementation of multilayer neural networks with the back-propagation learning algorithm employing memristor cross-bar matrices for weight storage is modeled. The proposed approach offers an efficient way to perform both learning and recognition operations. The solution of several arising problems, such as the representation and multiplication of signals as well ...

Journal: :IEEE transactions on neural networks 1994
V. V. Phansalkar P. S. Sastry

In this letter, the back-propagation algorithm with the momentum term is analyzed. It is shown that all local minima of the sum of least squares error are stable. Other equilibrium points are unstable.

1991
Guo-Zheng Sun Hsing-Hen Chen Yee-Chun Lee

The two well known learning algorithms of recurrent neural networks are the back-propagation (Rumelhart & el al., Werbos) and the forward propagation (Williams and Zipser). The main drawback of back-propagation is its off-line backward path in time for error cumulation. This violates the on-line requirement in many practical applications. Although the forward propagation algorithm can be used i...

Saeed Gholizadeh, Seyed Mohammad Seyedpoor,

An efficient methodology is proposed to find optimal shape of arch dams on the basis of constrained natural frequencies. The optimization is carried out by virtual sub population (VSP) evolutionary algorithm employing real values of design variables. In order to reduce the computational cost of the optimization process, the arch dam natural frequencies are predicted by properly trained back pro...

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

2011
Behzad Behzadan

Mutual information neuro-evolutionary system (MINES) presents a novel self-governing approach to determine the optimal quantity and connectivity of the hidden layer of a three layer feed-forward neural network founded on theoretical and practical basis. The system is a combination of a feed-forward neural network, back-propagation algorithm, genetic algorithm, mutual information and clustering....

Journal: Pollution 2015

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید