نتایج جستجو برای: edge 2 rainbow domination number
تعداد نتایج: 3487625 فیلتر نتایج به سال:
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) =...
A path in an edge colored graph is said to be a rainbow path if every edge in this colored with the same color. A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in G are connected by a path whose internal vertices have distinct colors. The rainbow vertexconnection number of G denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainb...
The domination subdivision number sdγ(G) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upp...
We obtain new results on the 2-rainbow domination number of generalized Petersen graphs P(ck,k). Exact values are established for all infinite families where general lower bound 45ck is attained. In other cases and upper bounds with small gaps given.
The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e. Let f be a mapping of the edge set E(G) of G into the set {−1, 1}. If ∑ x∈N [e] f(x) 1 for each e ∈ E(G), then f is called a signed edge dominating function on G. T...
An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this paper we show that rc(G) ≤ 3 if |E(G)| ≥ ( n−2 2 ) + 2, and rc(G) ≤ 4 if |E(G)| ≥ ( n−3 2 ) + 3. These bounds...
Let G = (V, E) be a graph. A subset D of V is called common neighbourhood dominating set (CN-dominating set) if for every v ∈ V −D there exists a vertex u ∈ D such that uv ∈ E(G) and |Γ(u, v)| > 1, where |Γ(u, v)| is the number of common neighbourhood between the vertices u and v. The minimum cardinality of such CN-dominating set denoted by γcn(G) and is called common neighbourhood domination n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید