نتایج جستجو برای: docking energy landscapes

تعداد نتایج: 704031  

Journal: :Journal of computer-aided molecular design 2004
Y. H. Yu B. Z. Lu J. G. Han P. F. Zhang

One main issue in protein-protein docking is to filter or score the putative docked structures. Unlike many popular scoring functions that are based on geometric and energetic complementarity, we present a set of scoring functions that are based on the consideration of local balance and tightness of binding of the docked structures. These scoring functions include the force and moment acting on...

Journal: :Proteins 2003
Li Li Rong Chen Zhiping Weng

We present a simple and effective algorithm RDOCK for refining unbound predictions generated by a rigid-body docking algorithm ZDOCK, which has been developed earlier by our group. The main component of RDOCK is a three-stage energy minimization scheme, followed by the evaluation of electrostatic and desolvation energies. Ionic side chains are kept neutral in the first two stages of minimizatio...

2016
Esteban López-Camacho María Jesús García-Godoy José García-Nieto Antonio J. Nebro José Francisco Aldana Montes

Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the R...

Journal: :Advances in bioinformatics 2015
Igor Oferkin Ekaterina V. Katkova Alexey V. Sulimov Danil C. Kutov Sergey I. Sobolev Vladimir V. Voevodin Vladimir B. Sulimov

The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 forc...

2017
Yuliang Jin Hajime Yoshino

For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate th...

Journal: :Frontiers in bioscience 2009
Yuji Sugita

Free-energy landscapes of proteins in solution are essential for understanding molecular mechanism of protein folding, stability, and dynamics. Because of the multiple-minima problem (or quasi-ergodicity problem), the conventional molecular dynamics or Monte Carlo methods cannot provide the landscapes accurately at low temperatures. By contrast, the simulations based on the generalized-ensemble...

Journal: :Journal of molecular modeling 2004
Markus H J Seifert Frank Schmitt Thomas Herz Bernd Kramer

Virtual high-throughput screening of molecular databases and in particular high-throughput protein-ligand docking are both common methodologies that identify and enrich hits in the early stages of the drug design process. Current protein-ligand docking algorithms often implement a program-specific model for protein-ligand interaction geometries. However, in order to create a platform for arbitr...

Journal: :The Journal of chemical physics 2007
Richard L Rowley Christopher M Tracy Tapani A Pakkanen

Potential energy landscapes for homogeneous dimers of propanol, isopropanol, tert-butanol, and sec-butanol were obtained using 735 counterpoise-corrected energies at the MP2/6-311+G(2df,2pd) level. The landscapes were sampled at 15 dimer separation distances for different relative monomer geometries, or routes, given in terms of the yaw, pitch, and roll of one monomer relative to the other and ...

2017
Victor Olariu Erica Manesso Carsten Peterson

Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید