نتایج جستجو برای: discrete time neural networks dnns
تعداد نتایج: 2505214 فیلتر نتایج به سال:
In the light of the improvements that were made in the last years with neural network-based acoustic models, it is an interesting question whether these models are also suited for noise-robust recognition. This has not yet been fully explored, although first experiments confirm this question. Furthermore, preprocessing techniques that improve the robustness should be re-evaluated with these new...
Deep Neural Networks (DNN) have become very popular for acoustic modeling due to the improvements found over traditional Gaussian Mixture Models (GMM). However, not many works have addressed the robustness of these systems under noisy conditions. Recently, the machine learning community has proposed new methods to improve the accuracy of DNNs by using techniques such as dropout and maxout. In t...
Deep Neural Networks (DNNs) have become the computational tool of choice for many applications relevant to mobile devices. However, given their high memory and computational demands, running them on mobile devices has required expert optimization or custom hardware. We present a framework that, given an arbitrary DNN, compiles it down to a resource-efficient variant at modest loss in accuracy. ...
We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs p...
In cocktail party listening scenarios, the human brain is able to separate competing speech signals. However, the signal processing implemented by the brain to perform cocktail party listening is not well understood. Here, we trained two separate convolutive autoencoder deep neural networks (DNN) to separate monaural and binaural mixtures of two concurrent speech streams. We then used these DNN...
In recent years, neural network language models (NNLMs) have shown success in both peplexity and word error rate (WER) compared to conventional n-gram language models. Most NNLMs are trained with one hidden layer. Deep neural networks (DNNs) with more hidden layers have been shown to capture higher-level discriminative information about input features, and thus produce better networks. Motivate...
Deep Neural Networks (DNNs) provide state-of-the-art solutions in several difficult machine perceptual tasks. However, their performance relies on the availability of a large set of labeled training data, which limits the breadth of their applicability. Hence, there is a need for new semisupervised learning methods for DNNs that can leverage both (a small amount of) labeled and unlabeled traini...
This paper proposes applying multi-task learning to train deep neural networks (DNNs) for calibrating the PLDA scores of speaker verification systems under noisy environments. To facilitate the DNNs to learn the main task (calibration), several auxiliary tasks were introduced, including the prediction of SNR and duration from i-vectors and classifying whether an i-vector pair belongs to the sam...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید