نتایج جستجو برای: density estimation
تعداد نتایج: 654707 فیلتر نتایج به سال:
Based on a random sample of size n from an unknown d-dimensional density f , the problem of selecting the variable (or adaptive) bandwidth in kernel estimation of f is investigated. The common strategy is to express the variable bandwidth at each observation as the product of a local bandwidth factor and a global smoothing parameter. For selecting the local bandwidth factor a method based on cl...
Convergence rates and central limit theorems for kernel estimators of the stationary density of a linear process have been obtained under the assumption that the innovation density is smooth (Lipschitz). We show that smoothness is not required. For example, it suffices that the innovation density has bounded variation.
Multivariate kernel density estimation provides information about structure in data. Feature significance is a technique for deciding whether features – such as local extrema – are statistically significant. This paper proposes a framework for feature significance in d-dimensional data which combines kernel density derivative estimators and hypothesis tests for modal regions. For the gradient a...
Standard fixed symmetric kernel type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. We show that in such settings, alternatives of asymmetric gamma kernel estimators are superior but also differ in asymptotic and finite sample performance conditional on the shape of the density near zero and the exact form of the cho...
Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod dis...
In this paper we present a generalization of kernel density estimation called Convex Adaptive Kernel Density Estimation (CAKE) that replaces single bandwidth selection by a convex aggregation of kernels at all scales, where the convex aggregation is allowed to vary from one training point to another, treating the fundamental problem of heterogeneous smoothness in a novel way. Learning the CAKE ...
This paper considers the problem of estimating probability density functions on the rotation group SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the heat kernel. Expressions are derived for their Mean Integrated Squared Errors. The performance of the estimators is studied numerically and compared with the performance of an exi...
Convergence rates of kernel density estimators for stationary time series are well studied. For invertible linear processes, we construct a new density estimator that converges, in the supremum norm, at the better, parametric, rate n. Our estimator is a convolution of two different residual-based kernel estimators. We obtain in particular convergence rates for such residual-based kernel estimat...
It is now common practice in machine vision to define the variability in an object’s appearance in a factored manner, as a combination of shape and texture transformations. In this context, we present a simple and practical method for estimating non-parametric probability densities over a group of linear shape deformations. Samples drawn from such a distribution do not lie in a Euclidean space,...
this paper presents a probabilistic optimal power flow (popf) algorithm considering different uncertainties in a smart grid. different uncertainties such as variation of nodal load, change in system configuration, measuring errors, forecasting errors, and etc. can be considered in the proposed algorithm. by increasing the penetration of the renewable energies in power systems, it is more essent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید